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5.1 Introduction to Multiple Comparison Tests

'The most common use of analysis of variance is in testing the hypothesis that p > 3
population means are equal. If the omnibus hypothesis of equality of means is rejected, a
researcher is still faced with the problem of deciding which of the means are not equal.
Thus, an omnibus F test is merely one step in analyzing a set of data. A significant I test
indicates that something has happened in an experiment that has a small probability of
happening by chance. In this chapter, I describe a variety of procedures for pinpointing
what has happened. Specifically, I examine a number of test statistics for deciding which
population means are not equal. But first, I need to introduce some important concepts.

Contrasts Among Means

A contrast or comparison among means is a difference among the means, with appropriate
algebraic signs. I use the symbols W, and ; to denote, respectively, the ith contrast among
population means and a sample estimate of the ith contrast. For example, Wy, =, —lL is
a contrast for population means {; and W ; y,=Y;—Yy is a sample estimator of the
population contrast. If an experiment contains p = 3 treatment levels, contrasts involving
two and three means may be of interest—for example, '

A ~ > A 1_7‘:+f 7
V=Y, -1, Yy = 12 Z—YG
A r r A I_;+? xr
(5.1-1) y,=Y,-Y; Vs = 12 3—Y2
A ~ oy A i’.- +I-7. r
Y=Y, -Y; Ve = 22 3‘Y~1

The contrasts on the right involve the average of two means versus a third mean. Such
contrasts could be used, for example, to compare the average of two experimental groups
with a control group.
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More formally, a contrast or comparison among ‘means is a linear combination of
means that have known weights or coefficients. The coefficients are denoted by c¢; and
satisfy two conditions: (1) at least one coefficient is not equal to zero (c; # 0 for some ),
and (2) the coefficients sum to zero (Zj’-’:l c¢; =0). The contrasts

Y; =l toly +o e U,
and
W, =q7; +c,Y, +---+cp1_/fp
are, respectively, population and sample contrasts if ¢; # 0 for some j and 25:1 ¢;=0.The

contrasts in equations (5.1-1) can be expressed as linear combinations of sample means by
the appropriate choice of coefficients:

;= clfl + szz + 7,

o= I+ DL+ 07, =Y,-7,

W = I+ 0, + (DG =TT
(5.1-2) ¥ = 0 4 7, + (DY =1-Y;

Wy = %—1 + %_2 + (DY, = Y-l"z‘Yz _7,

N

¥s = DT+ 30+ 17, :YZ;YS‘E

Notice that for each contrast, ¢; # 0 for some j and 25?:1 ¢; = 0. For convenience in
comparing the magnitudes of different contrasts, the coefficients of each contrast can be
chosen so that the sum of their absolute values is equal to 2; that is,

$le;|=2
j=1|cf|—

where | ¢; | indicates the absolute value of ¢; and is equal to the positive member of ¢; and
—C;. All six of the preceding contrasts satisfy Ei.’:ll c;= 2|. For example, the sum of the
absolute values of the coefficients for \Js; and j is, respectively,

|1|+]-1]+]0|=1+1+0=2

e 4f+1 1= 4412
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Pairwise and Nonpairwise Comparisons

When all of the coefficients of a contrast except two are equal to zero, the contrast is called
a pairwise comparison; otherwise, the contrast is a nonpairwise comparison. The num-
ber of pairwise comparisons that exist for p means is equal to p(p — 1)/2. For example,
contrasts \r;, {/,, and /5 in equations (5.1-2) exhaust the 3(3 — 1)/2 = 3 pairwise com-
parisons among three means. The situation is quite different for nonpairwise compari-
sons—the number is infinite. Consider the following examples in which an average of two

means is compared with a third mean: A

Uy =345, + (DY, = ‘IYIZIYZ“EQ
Wy =17, +27, +(- 1)Y3 %—Yg
\Tfs :%_-1 % (—1)Y3 —ﬂi‘f_fz_fs
o = 17, +47, + (-1)T, = 11 “;4Y2 A

The coefficients 4 and 2 in contrast 7, for example, indicate that ¥, is Weighted twice as
much as ¥, 1 When the means are averaged. The pattern of coefficients 1 55 2 ,—1; 4 3> 3, -1;
411’ 7,1 and ;, 5, —1 can be continued indefinitely. Hence, an infinite number of
nonpairwise contrasts can be constructed. Notice that the coefficients of these nonpairwise

contrasts are selected so that they satisfy the optional requirement that ¥ J_1| ¢c;= 2].

Orthogonal Contrasts

An infinite number of contrasts can be constructed for p > 3 means. Each of these contrasts
can be expressed as a linear combination of p — 1 contrasts. For example, the contrast
I, =Y, — Y, in equations (5.1-2) is equal to -3, +V,:

R 2
\%:[%(Yl Yz)] [%Yl+%f2_f3]=fl_f3

Thus, contrast 2 provides no information that cannot be obtained from contrasts 1 and 4.
Similarly, contrast 3, {3 =¥, — Y3, is equal to —L -, + 1, :

A

lell W4

W3_|:(__)(Y1 -, :|+[2Y1+ 1Y, - Y3] Y=Y, ¢



i%
3
|
-
g

CHAPTER 5 Multiple Comparison Tests 157

Contrasts 2 and 3 are redundant because they can be expressed as linear combinations of
contrasts 1 and 4.

Sometimes a researcher is interested in contrasts that are mutually nonredundant.
Such contrasts are called orthogonal contrasts. There is a simple rule for determining
whether two contrasts are orthogonal. Let \; and y denote the ith and i’th contrasts and
c;; and c;; their respective coefficients, where j =1, . . ., p. The two contrasts are orthogo-
nal if

J=1
for the equal » case or

for the unequal n case. Consider the contrasts in set 1:
W, =17, + (DY, + 075
Set 1 o _
Wy =2Y,+3Y, +(-DY;

and assume that the 7;s are equal. These two contrasts are orthogonal because the sum of
the products of their coefficients is zero:

» .
Zl ¢ ¢, =M +EDE+O0)(=1)=0
J=
However, contrasts
=1 +(DT,+07,  and =17, +0%, +(-DT,

are not orthogonal because

a3, = O + (DO + O)-D =1
Z

Contrasts {r, and s, are one of the infinite number of sets of orthogonal contrasts
among three means. Three other sets of orthogonal contrasts are

W, =1Y, +0Y, + (-DY,
Set 2
s = %Y1 + (DY, +%Y3
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s = 0Y, + 17, + DY,

Set 3 R = 1T .17
Ve = (DY +5Y+575

Set 4

because

§ e, = O+ QD+ DR =0
].—-—

§ 66, =D+ O+ (D=0
]=

$ 1010y = DED+ @G +HEDE =0

j=

I have now identified four of the infinite number of sets of orthogonal contrasts among
three means. Consider the set {; and again. The reader may wonder if it is possible
to find another contrast that is orthogonal to \jy; and \r,, . The answer is no. The maximum
number of orthogonal contrasts in any set is equal to p — 1. For my example, that number
is 3 — 1 = 2. To summarize, for p = 3 means, there are an infinite number of sets of orthog-
onal contrasts, but each set contains only p — 1 orthogonal contrasts.

Tt can be shown that any orthogonal set of p — 1 contrasts provides a basis for con-
structing all other contrasts that involve p means; that is, all contrasts can be expressed as
linear combinations of the contrasts in an orthogonal set. For example, 1 showed that
and \j, are orthogonal and that they could be used to construct y, and {3 :

A

W, = % i+
and
s = (—%)\?11 +\y

I show here that contrasts Ys, - p_also can be expressed as linear combinations of
‘1\[1=Y,1+Y,2 and \II4=%Y1+‘;‘Y2+(_1)Y.3Z )

ﬁ+ﬁ—@

. 2_ i

Y,+Y; =
2713 g
2

s = %\,l\fl + (—%)‘h =

Ve = (‘%)\Tﬁ + (—%)@14 =

1Y, +2Y, =
_J_;i_y3

Gy =0+ =
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. oA 437, o
¥g =¥+ =——2-T.

4 3
. L. 1Y +4Y, o
Yy =("1%)‘l’1 TV, :__1_5_2_Y3
. . . AV, 41V, o
Yio = (—‘1%)‘1’1 +(—%)‘lf4 = '_25*_3_ Y,

As I have shown, there are always p — 1 nonredundant questions that can be answered
from the data in an experiment. However, a researcher may not be interested in all of the
p — 1 questions. For example, in an experiment with three means, a researcher may want
to test the hypothesis that |1, —\, =0 but not that SH; +%H, + (=13 =0. The second
hypothesis, which is orthogonal to the first, may have no meaning in terms of the objec-
tives of the experiment. Also, many interesting research questions involve nonorthogonal
contrasts. In an experiment with three treatment levels, each of the three pairwise contrasts
among means may be associated with a question that the researcher wants to answer.
However, a researcher who tests the three pairwise contrasts needs to understand that the
tests involve redundant information. For example, the value of contrast {; =¥, — ¥ can
be obtained from contrasts , =¥, ¥, and {, =¥, —; as follows:

‘I’z _ITII
. — T
V=0 -%)-(4-5) =1, - T;

The analysis of variance (ANOVA) provides a test of the omnibus null hypothesis that
W =W, =---=W,. This test is equivalent to a simultaneous test of the hypothesis that all
possible contrasts among the p means are equal to zero. It is no accident that the between-
groups degrees of freedom in a completely randomized ANOVA design is equal to p — 1,
which is also the number of orthogonal contrasts that can be constructed from p means.

A Priori and a Posteriori Contrasts

In planning an experiment, a researcher usually has in mind a specific set of hypotheses
that the experiment is designed to test. Tests that involve these hypotheses are called a
priori or planned tests. This situation can be contrasted with another in which the
researcher believes that the treatment affects the dependent variable, and the experiment is
designed to accept or reject this notion. If the F test of the omnibus null hypothesis is
significant, the researcher knows that at least one contrast among the population means
is not equal to zero. Interest then turns to determining which contrast or contrasts among
the population means is not equal to zero. Tests that are used for data snooping—that is,
for identifying population contrasts that are not equal to zero following a significant omni-
bus test—are called a posteriori, unplanned, or post hoc tests.

Frequently, an experiment involves both a priori and a posteriori tests. After all of the
a priori tests have been performed, the researcher may want to test hypotheses suggested
by an inspection of the data. The collection of data is often time-consuming and costly.
Hence, it is important to extract all information contained in the data. This objective can
be accomplished by the judicious use of both a priori and a posteriori tests.
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Exploratory versus confirmatory data analysis. A posteriori tests are often used in
exploratory data analysis; a priori tests are usually used in confirmatory data analysis.
Although both approaches to data analysis have long been used in research, the terms
assumed more specialized meanings in the 1970s as a result of John Tukey’s work on
exploratory techniques and Karl Joreskog’s work on confirmatory techniques. Exploratory
data analysis is concerned with identifying patterns and features of data and revealing
these features. Exploratory techniques are typically used in the preliminary stages of a
research program when the researcher does not have sufficient information to make pre-
cise predictions or formulate testable models. An important characteristic of the explor-
atory approach is flexibility in probing the data and responding to patterns that are uncov-
ered in successive stages of the analysis. ,

Confirmatory data analysis is used after the researcher has accumulated enough
information to make predictions or formulate models. The confirmatory approach stresses
the evaluation of evidence as compared with the exploratory approach, which stresses the
flexible search for evidence. Data that have been collected for a confirmatory analysis
should always be subjected to an exploratory analysis. As mentioned earlier, it is important
to extract all information contained in the data.

Thus far, I have discussed two issues that are particularly important in selecting a
multiple comparison procedure: (1) Are the contrasts orthogonal or nonorthogonal? and
(2) Are the contrasts a priori, a posteriori, or a combination of the two? In the following
section, I discuss another important factor: the conceptual unit for a Type I error.

Three Kinds of Type | Error Rates

When an experiment involves one contrast, the probability of making a Type I error cor-
responds to the significance level that is assigned to the contrast. This value, denoted here
by o/, is usually either .05 or .01. When the experiment involves two or more contrasts,
the situation is more complicated. If a researcher tests C > 2 independent contrasts,! each
at the o level of significance, the probability of making one or more Type I errors is

(5.1-3) Probability of one or more Type I errors =1 — (1 - o)

which is approximately equal to C x o for small values of o". The rationale underlying
equation (5.1-3) is as follows. If a contrast is tested at the o/ level of significance, the
probability of not making a Type I error for that contrast is 1 — o/. If C independent
contrasts are each tested at the o level of significance, the probability of not making a
Type I error for the first, second, . . . , and Cth contrast is, according to the multiplication
rule for independent events, the product of the respective probabilities:

C te;rms
-a)(1—-a) - (1-a)=(1-a)°

s

1If the means are normally and independently distributed with mean equal to 1; and variance equal
to Gg /n;, then the orthogonality of the contrasts is equivalent to the statistical independence of the
contrasts.

h—_
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The expression (1 — )€ is the probability of not making a Type I error for C independent
contrasts. The probability of making one or more Type I errors is

Probability of one or more Type I errors = 1 — (probability of not making a Type I error
for C independent contrasts)

=1-(1-a)¢

As the number of independent tests increases, so does the probability of obtaining
spuriously significant results. For example, if o" = .05 and a researcher tests, say, 3, 5, or
10 independent contrasts, the probability of one or more Type I errors is, respectively,

1-(1-.05)° =.14
1—(1-.05)°=.23
1-(1-.05)%= 40
For nonindependent tests, the probability of making one or more Type I errors is
Probability of one or more Type I errors < 1 — (1 — )¢

It is apparent that if enough contrasts are tested, each at the o’ level of significance, a
researcher will probably reject one or more null hypotheses even though they are all true.
An alternative research strategy is to control the Type I error at o for the collection or
family of contrasts that are tested. I discuss this strategy next.

A family of contrasts consists of those contrasts that are related in terms of their con-
tent and intended use. For example, contrasts that involve a control group and two experi-
mental groups are a family. John Tukey (1953) described three kinds of Type I error rates
for such contrasts: per-contrast error rate, familywise error rate, and per-family error rate.
These .error rates are denoted by, respectively, Opc, Opys and Opp. Suppose that many
experiments, each involving a family of contrasts, are performed and we are able to count
the number of erroneous conclusions. The three Type I error rates can be defined as follows:

Number of contrasts falsely declared significant
Number of contrasts

Per-contrast error rate (Otpc) =

Number of families with at least one contrast
falsely declared significant

Familywise error rate (Olpy) = Number of familios

Number of contrasts falsely declared significant
Number of families

Per-family error rate (Opp) =

The per-contrast error rate is the probability that any one of the contrasts will be
incorrectly declared significant. Testing each contrast at the o level of significance allows
the error rate for the family of contrasts to increase as the number of tests increases. An
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alternative research strategy is to adopt the family of contrasts as the conceptual unit for
making a Type I error. If this strategy is adopted, a researcher can choose to control the
familywise error rate or the per-family error rate. The familywise error rate is the
probability of making one or more erroneous statements per family. The per-family error
rate is the long-run average number of erroneous statements made per family. This error
rate is not a probability but rather the expected number of errors per family of contrasts.

An example will help clarify the definitions of the three error rates. Suppose that 1000
replications of an experiment are performed and that for each experiment, 10 contrasts are
tested—10,000 tests in all. Also suppose that of the 10,000 tests, 90 tests are incorrectly
declared significant, and these 90 incorrect decisions are distributed among 70 of the
experiments. The three error rates are as follows:

97“’ ComPOuiton ¢ lor [ «F. Number of contrasts falsely declared significant 90
Per-contrast error rate = = =.
Number of contrasts 10,000

X Number of families with at least one contrast
falsely declared significant 70

Number of families =To00 "7

Familywise error rate =

Number of contrasts falsely declared significant 90 09
Number of families 71000

Per-family error rate =

The three Type I error rates become more and more divergent as the number of con-
trasts in an experiment increases; the three error rates are the same when the experiment
involves only one contrast. For C > 2 independent tests, the relationship among the three
error rates is

C
J=

If a researcher tests five mutually independent contrasts, each at, say, o/ = .05, the error
rates are

Ope =05 <[ Oty =1=(1=.05)° =23 | < [0ty = (5)(.05) = 25]

For small values of o/, the per-family and familywise error rates are numerically
almost identical. For example, if a researcher tests five mutually independent contrasts,
each at o = .01, the per-family error rate is .05:

5
OCPF = z .01 = .05
j=1
The familywise error rate is .049: ‘ .
Oy =1—(1—.01)° =.049

# othr qucthoce FIVER (Bilyppyeoe errol /D/t;))

= epiihaTWise  grror (Wb 0
= P(/\Trf (;Q/D’T orw '{:&(/}(//y “I‘C‘/\g*ﬁ(}r/[{c&f/ %/}&DTM)OD)

_
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If a researcher controls the per-family error rate for C > 2 tests at Oy, the familywise error
rate cannot exceed Olpp.

When a completely randomized analysis of variance design is used to test the omnibus
null hypothesis

Hy py=pp="=u,

the p treatment levels are the conceptual unit for a Type I error. If a test of the omnibus
null hypothesis is significant, interest usually shifts to determining which contrasts among
the treatment means are significant. It is customary to assign the same error rate to the
family of contrasts as was assigned to the omnibus null hypothesis. This principle
generalizes to multitreatment ANOVA designs. A factorial design with two treatments
involves three tests: treatment 4, treatment B, and the A X B interaction. If, say, a test of
treatment 4 is significant at the oo = .05 level of significance, it is customary to assign the
same o = .05 error rate to the family of contrasts associated with treatment 4.

For multitreatment ANOVA designs, another conceptual unit for a Type I error can be
identified: the experiment. If the familywise Type I error is .05 for treatment 4, .05 for
treatment B, and .05 for the 4 X B interaction, the experimentwise error rate, Ogy, is
equal to

Olgy = 1—(1-.05)° =.143

What Is the Correct Conceptual Unit for a Type | Error?

The merits of making the contrast or some larger unit, such as the family or experiment,
the conceptual unit for the error rate were extensively debated in the early 1960s. If an
experiment involves only one contrast, there is no debate; the error rates for the contrast,
family, and experiment are the same. The question only arises when the family or experi-
ment involves two or more contrasts. As you will see, the answer to the question, “What
is the correct conceptual unit for a Type I error rate?” depends on the nature of the con-
trasts of interest.

If orthogonal contrasts have been planned in advance, contemporary practice favors
adopting the contrast as the conceptual unit for a Type I error. Earlier you saw that testing
a priori, orthogonal contrasts is equivalent to partitioning the data so that each test involves
nonredundant pieces of information. Such contrasts are chosen in advance because they
address particular research questions of interest. Furthermore, the number of such research
questions cannot exceed the number of nonredundant questions, p — 1, that can be
answered from a set of data. By comparison, nonorthogonal contrasts involve redundant
information; the outcome of one test is not independent of those for other tests. Here con-
temporary practice favors adopting a larger unit such as the family of contrasts as the
conceptual unit for a Type I error.

A strong case can be made for these practices. Consider the following two a priori
orthogonal contrasts: y; = i, — W, and y, = (U; + W,)/2 — l;. A researcher could choose to
conduct a single experiment to test hypotheses about the two contrasts. Alternatively, a
researcher could choose to conduct two separate experiments: The first experiment could
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test the hypothesis pt; — 1, = 0 and the second the hypothesis (4, + W,)/2 — U3 = 0. The
outcome of the first experiment would provide no information about the probable outcome
of the second experiment. This research situation can be contrasted with a second situation
in which a researcher is interested in the three pairwise, nonorthogonal contrasts among
three means: Y, = [ — Wy, Yo =My — g, and Wy =L, —Us. Again, the researcher could
conduct a single experiment or separate experimenté. If the researcher chose to conduct
separate experiments to test the three null hypotheses, the reader might anticipate that it
would be necessary to conduct three separate experiments. Actually, only two separate
experiments are necessary because the outcome of testing Hy: W —M, =0 and Hy
1, — ;=0 could be used to predict the outcome of the third experiment. This follows
because, as I showed earlier, {3 =, —

@’2 _\Tﬁ
— _

L ==Y = = —
¥ = (0 -1%)- (0 - 1) =T, - Fs

Contemporary practice treats experiments involving orthogohal contrasts differently
from those involving nonorthogonal contrasts. In the first example involving a priori
orthogonal contrasts, it is customary to control the per-contrast Type I error rate. In the
second example involving nonorthogonal contrasts, contemporary practice favors control-
ling the familywise or per-family Type I error rate.

The practice of treating orthogonal contrasts differently from nonorthogonal contrasts
extends to the analysis of variance. Consider a two-treatment factorial ANOVA design
with equal sample sizes in which the researcher has advanced a priori hypotheses about
treatments 4 and B and the 4 X B interaction. The two treatments and the interaction rep-
resent three orthogonal families of contrasts. The usual practice in analysis of variance is
to control the familywise Type I error rather than the experimentwise error.

Complete Versus Partial Null Hypotheses

In choosing a multiple comparison procedure, it is important to consider the nature of the
null hypothesis that is to be tested. A null hypothesis can be complete, which means that
all population means are equal, or partial, which means that only a subset of the means is
equal. Hayter (1986) recommended that if a researcher wants to control, say, the family-
wise error rate, a multiple comparison procedure should be chosen that controls the maxi-
mum familywise error rate attainable under any complete or partial null hypothesis. Not
all multiple comparison procedures meet this requirement. One example is the LSD (least
significant difference) multiple comparison procedure proposed by Fisher (1935a), which
consists of two steps. In the first step, the omnibus null hypothesis is tested with an analy-
sis of variance F test with oty = 0, where the o is equal to, say, .05. If the F" test is not
significant, the omnibus null hypothesis is not rejected; and no more tests are performed.
If the omnibus null hypothesis is rejected, Student’s  statistic is used to test each pairwise
contrast with ope = o, where the o = .05. Fisher’s procedure controls the familywise
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Type I error rate when the complete null hypothesis is true. However, if the experiment has
more than three treatment levels and the complete null hypothesis is rejected, the family-
wise error rate exceeds of (Hayter, 1986). Therefore, Fisher’s procedure is not recom-
mended when an experiment has more than three treatment levels because it fails to con-
trol the maximum familywise error rate attainable under any complete or partial null
hypothesis at a preselected level of significance.

Conceptual Unit for Power

Earlier, I discussed the merits of making the contrast or some larger unit, such as the fam-
ily or experiment, the conceptual unit for the error rate. A similar issue arises in connection
with power. The power of a multiple comparison procedure is the probability of rejecting
a false null hypothesis. Other things equal, a researcher wants to use a procedure that both
controls the Type I error rate at an acceptable level and provides maximum power. That
is easier said than done because there are a number of ways of defining power. One
conception of power is overall power—the probability of rejecting a false complete null
hypothesis. This is the power associated with the F test in analysis of variance. Another
conception of power, introduced by Einot and Gabriel (1975), is P-subset power. P-subset
power focuses on detecting the heterogeneity of means from a subset of a particular size—
say, two means or per-pair power, three means or per-triplet power, and so on. Per-pair
power, for example, is often expressed as the average probability of detecting true differ-
ences among all pairs of means.

In 1978, Ramsey introduced two more conceptions of power: any-pair power and all-
pairs power. Any-pair power is the probability of detecting at least one true difference
among all pairs of means. All-pairs power is the probability of detecting all true differ-
ences among all pairs of means. There is some debate as to which of the four conceptions
of power is more appropriate. Consequently, when researchers investigate the relative
power of multiple comparison procedures, it is customary to report data for each kind of
power. The different conceptions of power yield different power numbers because any-pair
power focuses on the largest mean difference, all-pairs power focuses on the smallest
mean difference, and per-pair power is an average that is appropriate for only those two-
- mean differences that are equal to the average. As would be expected, the any-pair power
of multiple comparison procedures is higher than the all-pairs power; the per-pair power
falls between that for any-pair power and all-pairs power.

Three Kinds of Test Statistics

Most multiple comparison procedures use one of the following test statistics:

t statistic:




s

166 Experimental Design

¥4 —_
W a €y YJ
g statistic: ~ ——=-——
GY MSCH'OY
n
5 =2 S — 2 S
Sn¥;—| XXy | [ Xny
Fotatistic:  osof mems _ /7 s e
MS error - (S _1)MSerror

where p is the number of means and s is the number of means in a set of the means.

The labels 7, g, and F are a convenient way to identify the statistics and their sampling

distributions: Student’s ¢ distribution, the Studentized range distribution, and the F
distribution, respectively. Critical values for these distributions are given in Appendix

E. The numerator of the ¢ and ¢ statistics is always a contrast, which is a kind of
range; the denominator is either the standard error of a contrast, 6\41’ or the standard)
error of a mean, Gy. The numerator of an F statistic is computed from all of the

means included in a set of means. Both the numerator and the denominator of an F
statistic are variances.

For pairwise contrasts with equal sample sizes, the three statistics are related as fol-

lows:
— q _J—— (l\f — \’p _ MSsetofmeaﬁs
t=——==AF or —— = — = }
\[i G\ll GY\/E MSerror

In general, the F statistic tends to be more powerful than the g statistic, but as you will see,
it requires much more computation. Differences among the t, g, and F statistics are
examined in more detail in the following section. Computational examples for the three
statistics are given in Sections 5.2 to 5.6.

Single-Step Versus Multiple-Step Procedures

In a 1990 literature survey, 1 identified more than 30 multiple comparison procedures
used by researchers (Kirk, 1990). And the list continues to grow. It is convenient to clas-
sify multiple comparison procedures as either single-step or multiple-step procedures. A
single-step procedure uses one critical value to test hypotheses about contrasts.? Any
test statistic that exceeds or equals the critical value is declared significant, and the
associated null hypothesis is rejected. A variety of single-step procedures are described
in Sections 5.2 to 5.7. A multiple-step procedure uses two or more critical values to
test hypotheses. There are three types of multiple-step procedures: two-step, step-down,
and step-up procedures. Fisher’s two-step multiple comparison procedure was described
earlier in this section. The general features of step-down and step-up procedures are
described next. )

2Single-step procedures also are called simultaneous procedures.
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Step-down procedure. Suppose a researcher wants to use a step-down procedure to test
hypotheses for all pairwise contrasts among five means. The researcher has ordered the
means from the smallest to the largest as follows:

Y,=129 Y,=146 Y,=161 ¥,=188 Y, =197

If a g statistic is used, the step-down procedure begins by testing the contrast involving the
smallest and largest means—that is, a contrast in which the means are separated by » = p
steps, in this example, five steps. If the null hypothesis u; — W5 = 0 is rejected, then
hypotheses W, — 1, = 0 and p, — ps = 0 are tested. These hypotheses involve means
separated by 7 = 4 steps. If these hypotheses are rejected, all hypotheses involving means
separated by » = 3 steps are tested and finally all means separated by » = 2 steps. The
critical value that a g statistic must exceed is a function of the number of steps that separate
the means. The critical value is largest for contrasts whose means are separated by five
steps and smallest for contrasts whose means are separated by two steps. If the null
hypothesis for a contrast is not rejected, by implication the null hypotheses for all contrasts
encompassed by the nonrejected contrast are not rejected. This testing strategy ensures
coherence. For example, if a test of the hypothesis 1; — 3 = 0 is not rejected, then tests
of i, — 1, = 0 and p, — Uy = 0 are not rejected by implication.

When an F statistic is used with a step-down procedure, the first test is the same as an
ANOVA F test of the omnibus null hypothesis—that is, a test of jL; = U, = 3 = 1y = Us. If
this hypothesis is rejected, the F statistic is used to test the homogeneity of all subsets
of s = p — 1 = 4 means—that is, a test of (1) U; = Uy = U3 = Wy (2) Ky = Ky = Uy = Us;
(3) Hy = Hy = Ky = Us; (4) 1y = 13 = Wy = Us; and (5) W, = Hy = Uy = Ks. Next, the homogene-
ity of all subsets of three means is tested, excluding those subsets declared homogeneous by
implication. Finally, the homogeneity of all subsets of two means is tested, again excluding
those subsets declared homogeneous by implication.

It should be evident that more tests are required when an F statistic is used than when
a g statistic is used. For example, to reject the hypothesis p1; — |1, = 0, the g statistic must
have previously rejected [y — s = 0, WL; — Wy = 0, and Y, — Wy = O0—three null hypotheses.
To reject the same hypothesis, the /7 statistic must have previously rejected the homogene-
ity of (1) by = My =My = Py = Hs, (2) ly =My = Py = My, G) Wy = 1y = [z = U, (4) g =
Hy = Hy = s, (5) By = 1y = Wy, (6) 1y = [, = [y, and (7) 1y = Py = Us—seven null hypoth-
eses. A computational example using a 7 statistic is presented in Section 5.2; examples
using F and q statistics are presented in Section 5.5.

Step-up procedure. A third type of multiple-step procedure is the step-up procedure.
Once the p means have been ordered from smallest to largest, hypotheses involving adja-
cent means are tested. If a null hypothesis for one of these contrasts is rejected, then by
implication all null hypotheses that contain the rejected contrast also are rejected. For
example, suppose that the null hypothesis u; — p, = 0 is rejected but [y — [, =0, 1, —
1y =0, and W, — [s = 0 are not rejected. The explicit rejection of i3 — 1, = 0 results in the
implicit rejection of 1, — fts = 0, Jl; — Ly = 0, [y — ls = 0, [, — Py = 0, and p3 — ks = 0.
Because the hypotheses |1; — L, = 0 and W, — 15 = 0, for example, involving adjacent means
are not rejected, it is necessary to explicitly test the contrast [1; — l; = 0, which is separated
by three steps.




168 Experimental Design

Step-down procedures are widely used in the behavioral sciences, health sciences, and
education. Step-up procedures are used less often. Both kinds of procedures tend to be
more powerful than single-step procedures. However, step-down and step-up procedures
suffer from several shortcomings: (1) In general, they cannot be used to construct confi-
dence intervals; (2) with a few exceptions, they cannot be used to test directional hypoth-
eses; and (3) they tend to require more computation than single-step procedures.

- Five Common Hypothesis-Testing Situations

From a review of the literature in the behavioral sciences, health sciences, and education,
I have identified five hypothesis-testing situations that occur with some degree of regular-
ity: testing hypotheses about '

1. p—1 apriori orthogonal contrasts

2. p—1apriori nonorthogonal contrasts involving a control group mean
3. C a priori nonorthogonal contrasts

4. All pairwise contrasts among p means

5 All contrasts including nonpairwise contrasts that appear interesting from an
inspection of the data

Contrasts in the first category are a priori and orthogonal; those in the other four categories
are nonorthogonal. As discussed carlier, for contrasts in the first hypothesis-testing
situation, the usual practice is to adopt the individual contrast as the conceptual unit for a
Type I error. For the other four hypothesis-testing situations, it is customary to adopt the
family of contrasts as the conceptual unit for a Type I error.

_ Statisticians have developed a variety of test statistics that can be used to control the
Ty;pe I error rate in these five situations. Table 5.1-1 summarizes the test statistics that I
recommend for each situation. The procedures in the upper part of the table assume nor-
mality of the population distributions, random sampling or random assignment, and homo-
geneity of population variances. Tukey’s test, the REGW FQ test, and the REGW 0 test
also require equal-sized samples. If the assumption of homogeneity of population vari-
ances is not tenable or the requirement of equal-sized samples is not met, the multiple
comparison procedures in the lower part of Table 5.1-1 can be used. As you will see, the
power of the recommended procedures differs markedly. In general, test statistics that
were designed for testing a select, limited number of a priori contrasts are more powerful
than those designed to test all pairwise comparisons or all possible contrasts. Hence, when
possible, it is to a researcher’s advantage to specify in advance either orthogonal contrasts
or a limited number of contrasts. The problem facing a researcher is to choose the test
statistic that provides both the desired kind of Type I error protection and maximum power.
The following sections describe the recommended test statistics for each of the five
research situations.
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Table 5.1-1 » Multiple Comparison Procedures That Are Recommended for Five Common Research

Situations

Recommended Procedures When Assumptions Are Tenable

Orthogonal Contrasts

Nonorthogonal Contrasts

A priori
contrasts

1. Testing p — 1 contrasts
Student’s £ test (5.2)*

2. Testing p — 1 contrasts with a control group

mean

Dunnett’s test (5.3)

. Testing C contrasts**

Dunn-Sidak test (5.4)
Holm’s test (5.4)

A posteriori
contrasts

. Testing all pairwise contrasts**

Tukey’s test (5.5)
Fisher-Hayter test (5.5)
REGW E FQ, and Q tests (5.5)

. Testing all contrasts

Scheffé’s test (5.6)

Recommended Procedures When Assumptions Are Not Tenable

Orthogonal Contrasts

Nonorthogonal Contrasts

1. Testing p — 1 contrasts:

Heterogeneous
variances

Student’s ¢ test with
Welch degrees of
freedom (5.2)

2. Testing p — 1 contrasts with a control group

mean:

Unequal sample #s or heterogeneous
variances

Dunnett’s test with modifications (5.3)

A priori
contrasts

. Testing C contrasts:

Heterogeneous variances**

Dunn-Sidék test with Welch degrees of
freedom (5.4)

Holm’s test with Welch degrees of freedom (5.4)

(Continued)
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Table 5.1-1 » Multiple Comparison Procedures That Are Recommended for Five Common Research
Situations (Continued)

4. Testing all pairwise contrasts:
Unequal sample sizes
Tukey-Kramer test (5.5)
Fisher-Hayter test (5.5)
Heterogeneous variances**

A posteriori Dunnett’s T3 test (5.5)

contrasts

Dunnett’s C test (5.5)

Games-Howell test (5.5)

| .
; 5. Testing all contrasts:
1 Heterogeneous variances

Brown-Forsythe test (5.6)

Note: The recommended procedures control the per-contrast, familywise, or per-family error rate and also have one or a
combination of the following virtues: conceptual simplicity, ease of computation, excellent power, availability of confidence
intervals, and robustness. '

*The numbers in parentheses denote the section in which a procedure is described.

##¥When more than one procedure is recommended, the procedures are listed in order of increasing power.

5.2 Procedures for Testing p — |
a

Student’s Multiple t Test

Student’s 7 statistic is a single-step procedure that can be used to test null hypotheses of

the form
Ho: \Vl = 0
H0: llf2= 0
HO: \Vp—l = 0

where the p — 1 contrasts are a priori and mutually orthogonal. It is not necessary to test
the omnibus null hypothesis with an ANOVA F statistic prior to testing the individual
contrasts. An omnibus test answers the general question, ¢Are there any differences among
the population means?” If a specific set of orthogonal contrasts has been advanced, a
researcher is not interested in this general question. Rather, the researcher is interested in

1

_
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answering a limited number—p — 1 or fewer—of specific questions. As I discussed in
Section 5.1, current practice favors testing each of the p — 1 contrasts at oy = o, that is,
controlling the per-contrast error rate.

The ¢ statistic for testing a null hypothesis is

4 —
_ ’[I[i _ j=l Jo _ CIY1+02Y2+"‘+CPYP
G 2 2 2 2
VY; P C; C. c c
J 1 2 p
MSeror 2 == [MSeppr | = +—5 -+
_]=1nj nl nz np

where 6% is the standard error of the ith contrast and MS,_, is a pooled estimator of the
population error variance. For data that fit a completely randomized ANOVA design, a
within-groups mean square (MSWG) is used to estimate the population error variance and

is given by

., 2
23U P(E‘l};) 4

MSWG=| X XY =X ~——— |/ X (n; -]
j=li=1 1 n =1

with Z§=1(n ;—1) degrees of freedom. If the sample sizes are equal, the formula for
MSWG is

R
g L2 p(Elzj)
MSWG=| 3 3723~ 2 |/ p(n-1)
j=1

Jj=li=1 . n

with p(n — 1) degrees of freedom. A two-sided null hypothesis is rejected if the absolute
value of 7 exceeds or equals the critical value, 7, ,, obtained from Student’s # distribution
in Appendix Table E.3, where o. represents the per-contrast error rate and v is the degrees
of freedom associated with the denominator of the ¢ statistic. A one-sided null hypothesis
is rejected if the absolute value of ¢ exceeds or equals the critical value, #, , and the
f statistic is in the predicted tail of the ¢ sampling distribution.

Computational Example Using a t Statistic

The use of Student’s ¢ statistic to test hypotheses about a priori orthogonal contrasts is illus-
trated for an experiment in which 45 subjects have been randomly assigned to five qualitative
treatment levels, with 9 subjects in each level. Suppose that the five treatment means are

Y,=36.7,Y,=487,Y,=434,Y, =47.2,Y5 =403
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Assume that the treatment populations are approximately normally distributed and the
variances are homogeneous. The design of this experiment corresponds to a completely
randomized ANOVA design; hence, MSWG is the appropriate estimator of the common
population error variance. Assume that the estimate of the population error variance is
MSWG =29.0322 with degrees of freedom equal to p(n— 1) = 5(9 — 1) = 40. The researcher
plans to test the four hypotheses listed in Table 5.2-1. The .05 level of significance is
adopted for each test. The reader can verify that the contrasts in Table 5.2-1 are mutually
orthogonal.

Table 5.2-1 = Coefficients of Orthogonal Contrasts and Associated Statistical Hypotheses

Coefficients of Contrast

Contrasts | ¢; Cy c3 Cy4 cs Statistical Hypotheses
7] 0 - 1 -1 0 0 Hy. py—n3=0
} Hy: =370
§ L2 0 0 0 1 -1 Hypy—ps=0
- . Hiipy—Us#0
V3 0 1 1 -1 ~1 | Hy: (p +13)/2 = (Mg + 15)2 =0

Hy: (M + 13)/2 — (g + 15)/2 70

Ve ! % ! -4 —1 | Hop iy~ (Hp+HgFHgt Hs)/4=0
Hy: g — (Bt Bg + g + Us)/4 £ 0
The ¢ statistics are
t=&_= oy +eXy ++e, Y,
6‘ 2 2 2
V; C
J;?WG£3+C_2+...+_17]
. }]Il _ (1)48.7+ (=434  _ 5.300 909 -

2.540
o ﬁ9,0322[(—19)i+(—"é1)—2} \

s ¥,  ()47.2+(-1)403 _ 6.900 o7

9

6. 2, 2] 2540
Ve \[29.0322{%)—+(—9—}
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¥y (DA87+(1)43.4+(-D472+(-H403 2300 1

~

e \/29.0322{(%9)2 +(%)2 +(—%)2 +(_%)2} 1.796

=

9 9 9

N, (D36.7+(=1)48.7+(=1)43.4+(-D472+(-D)403 8200

A

cj\|l4 \/290322[(19)2 N (_3)2 . (_9%)2 . (_3)2 . (_9%)2} 2.008

—4.08

The critical value, s, 49, Tequired to reject the null hypotheses is 2.021 according to
Student’s # distribution in Appendix Table E.3. Because the absolute value of the ¢ statistic
for contrasts y;, V,, and y, exceeds the critical value, the associated null hypotheses can
be rejected.

The four ¢ tests use the same error mean square (29.0322) in the denominator.
As a result, the tests of significance are not statistically independent, even though
the contrasts are statistically independent. Research by Norton and Bulgren, as cited
by Games (1971), indicates that when the degrees of freedom for MS, .. are moder-
ately large, say 40, multiple ¢ tests can, for all practical purposes, be regarded as
independent.

Confidence Intervals for a Priori Orthogonal Contrasts

The Publication Manual of the American Psychological Association (American
Psychological Association, 2010) states that, in general, reporting confidence intervals is
a better strategy than reporting null hypothesis significance tests. I discuss some of the
advantages of confidence intervals in Section 2.5. Many of the test statistics in this chapter
have confidence interval analogs. Next, I describe a confidence interval analog of
Student’s multiple # statistic.

A 100(1 — )% confidence interval for an a priori orthogonal contrast is given by

U, =@ <y, <, +(2)
where

V=Yt Y+t Y,

2 2 2
N C c c
W) = oc/2,v\/MScrror{ L2t P]

noon n

Y=l Gl O 1,
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Consider the contrast y; =L, — L, in Table 5.2-1. The information necessary to construct
a 95% confidence interval for this contrast is \{; =48.7 — 43.4 = 5.3, 155 49 = 2.021,
MSWG =29.0322, and

2 2
() = 2.021\/29.0322(%+£“91—)j = 2.021(2.540) = 5.133

The confidence interval is

U =@ <y <y +9()
53-5.133< y; <53+5.133
0.17 < y; <1043
A researcher can be 95% confident that the open interval [0.17, 10.43] contains the

population contrast. This confidence interval corresponds to the darkened portion of the
real number line as follows:

LL=0.17 UL=10.43

I H I o) |
A\ A\

-5 0 5 10 15

95% confidence interval for ps -3

Confidence intervals permit a researcher to reach the same kind of decision as tests of
null hypotheses. Because the interval [0.17, 10.43] does not include zero, a researcher
knows that the null hypothesis H,: 1L, — 3 =0 can be rejected. If the confidence interval
includes zero, the null hypothesis cannot be rejected. Confidence interval procedures per-
mit a researcher to consider the tenability of all possible null hypotheses, not just the
hypothesis that a contrast is equal to zero. For example, the null hypothesis Hj: U, — 13 =
12 would be rejected but not Hy: 1, — U3 = 8. Also, the size of the confidence interval
provides information about the error variation associated with an estimate and, hence, the
strength of the inference. The preference in the Publication Manual of the American
Psychological Association (American Psychological Association, 2010) for reporting the
outcome of confidence intervals rather than hypothesis tests is understandable. Both pro-
cedures involve the same assumptions, but confidence intervals provide more information
about the data.

Assumptions Associated With Student’s t Statistic

s

The assumptions associated with using Student’s ¢ statistic to test a hypothesis or construct
a confidence interval are (1) the observations are drawn from normally distributed popula-
tions; (2) the observations are random samples from the populations, or the experimental
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units are randomly assigned to the treatment levels; and (3) the variances of the popula-
tions are equal.

Effects of nonnormality. The effects of sampling from nonnormal populations on the F test
in analysis of variance are discussed in Section 3.5. Research indicates that if the treatment
populations have the same shape—for example, all positively skewed or all leptokurtic—and
the sample sizes are fairly large, then the actual probability of making a Type I error is fairly
close to the nominal or specified probability. Much less is known about the effects of non-
normality on Student’s # statistic and on other multiple comparison procedures. Boneau’s
(1960) research on the  statistic and H. J. Keselman and Rogan’s (1978) research on a vari-
ety of multiple comparison procedures suggest that the results obtained for ANOVA general-
ize to these procedures. In other words, when sample sizes are large, the  statistic and other
multiple comparison procedures appear to be robust with respect to nonnormality. This
conclusion is consistent with that of Ramseyer and Tcheng (1973). However, the research of
Micceri (1989) and Hill and Dixon (1982) on the prevalence of extreme nonnormality in the
behavioral sciences, medical sciences, and education is reason for concern.

Effects of heterogeneous variances. The denominator of the ¢ statistic uses a pooled esti-
mator of the common population variance. If the population variances are not homoge-
neous, the use of a pooled estimator may affect the Type I error rate (Games & Howell,
1976). The Type I error is most likely to be affected when the sample sizes are unequal and
the smaller samples are obtained from the populations that have the larger variances. Also,
Boik (1975) and Kohr and Games (1977) have shown that when the sample sizes or the
absolute values of the contrast coefficients are unequal—for example, %, %, and 1—the
Type I error rate is also likely to be affected by heterogeneous population variances. Under
these conditions, one of the robust procedures described next can be used.

Robust Procedures for a Priori Orthogonal Contrasts

If the assumption of the equality of population variances is not tenable, the pooled estima-
tor in the denominator of the ¢ statistic can be replaced with individual variance estimators.
The resulting statistic, denoted by 7', is

P _
,\ Yc.Y. _ _ _
(5.2-1) /= Vi _ A Jd _ 01Y'1+C2Y2+"'+CPYP

ol 272 242 272 242
Vi P C;G; ;0] €0 c,0
s L 191 , 902, "rp
| j=l m ny n,

The earliest attempts to determine the sampling distribution of ¢ were made by Behrens
(1929) and enlarged upon by Fisher (1935a). There is no exact solution for this problem.
A number of approximate solutions have been proposed: (1) Cochran (1964),
(2) Satterthwaite (1946), and (3) Welch (1938, 1947). In general, there is close agreement
among these approximate solutions; accordingly, only the approximations of Cochran and
Welch are described.
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Cochran’s procedure uses the ¢’ statistic defined in equation (5.2-1). The two-tailed
critical value of ¢’ is given by

& &%
toc/2,v. n_ +toc/2,vj, n
p J J
o/2,v 62 62
L
nj njl

where 7y, v, and £ v, are the critical values of Student’s # distribution at the o level of
31gn1ﬁcance for v, = n — 1 and v, =n;, — 1 degrees of freedom, respectively. The critical
value for Cochran s t is always between the ordinary ¢ values for v; and v, degrees of
freedom. For a one-tailed test, values of 7, ,, and 7, v, are used. If n; = n, then t' =t and
the conventional ¢ value with n, — 1 degrees of freedom can be used The ¢’ test is
conservative because the critical value for ¢’ tends to be slightly too large.

Welch’s (1938, 1947, 1949) procedure also uses the #* statistic defined in equatlon
(5.2-1). An excellent approximation to the critical value of #’ can be obtained from

Student’s ¢ distribution with degrees of freedom equal to

2
242 222 2482
¢ O c,0 c
[11+22+m+pp]
v,; l’ll n2 np
- 44 4~ 4 4 n4
¢ 0 €% .., pOp

n(m -1 (-1 n’(n, —1)

Wang (1971) reported that when the sample #s are greater than five, Welch’s approximate
solution controls the Type I error fairly close to o for a wide range of population variances.
Similar results were reported by Scheffé¢ (1970). Kohr and Games (1977) reported that
Welch’s procedure provides reasonable protection against Type I errors when the variances
are heterogeneous and the sample sizes or the absolute values of the coefficients of a
contrast are unequal.

In summary, when the assumption of the homogeneity of population variances is not
tenable, the ¢’ statistic with Welch’s modified degrees of freedom is recommended for test-
ing hypotheses about p — 1 a priori orthogonal contrasts. Welch’s modified degrees of
freedom also can be used with other test statistics; I return to this point later.

5.3 Procedures for Testing p — | Contrasts
Involving a Control Group Mean

5

Dunnett’s Multiple Comparison Test

The purpose of many experiments is to compare each of p — 1 treatment means with
a control group mean. Dunnett (1955) developed a single-step, multiple comparison
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procedure for this purpose—that is, for testing p — 1 null hypotheses that have the follow-
ing form: :

Hyyp=p —1=0

Hywyy,=p —u3=0

Hy: W, =M =1, =0

where |1; denotes the control group mean. More specifically, Dunnett’s procedure is
applicable to any set of p — 1 a priori nonorthogonal contrasts for which the p — 1
correlations between the contrasts are equal to 0.5. A correlation of 0.5 occurs, for
example, when each of p — 1 experimental group means is compared with a control group
mean and the sample sizes are equal. To illustrate, consider the contrasts in Table 5.3-1,
where Y, is the control group mean and the other means are experimental group means.
The correlation between the ith and the i’th contrasts is given by

p
Z CyiCrj /n
Pir = =
J(gc;/njw(gcgj/nj)
j=1 j=1

For contrasts \{; and V,,

ﬁl ¢1;¢2; = (D) +(=1)(0) +(0)(=1) +(0)(0) + (0)(0) =1
]._..

s ety = (% + (=1 +(0)* +(0)* +(0)* =2

j=1

5.3, = (07 + (0 + (17 +(0)? (02 =2
j=l

Suppose that each sample  is equal to 9. The correlation between contrasts \j, and ,, is

1/9

N YD)

It can be shown that the correlation between contrast {; and the other three contrasts, /5,
V4, and Vs, also is 0.5.

Dunnett’s procedure uses Student’s ¢ statistic with equal sample #ns. The test statistic
is denoted by DN.

c;¥;+c Xy

(DN =1 =
&,  [2MS

error
n
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Table 5.3-1 u p — 1 Contrasts With a Control Group Mean, }_Tl [Data are from Section 5.2, where
MSWG =29.0322,p=5,n=9,andv=pn—1)=35(9 - 1) =40.]

Sample Means

Y,=367 Y, =487 Y;=434 Y, =472 Y5=403

Contrasts Coefficients of Contrasts
¥y 1 -1 0 0 0 Y,-Y, =-12.0%
\z 1 0 -1 0 0 V-7 =-6.7*
. W3 1 0 0 ~1 0 7,- 7,=-10.5*
o Vs 1 0 0 0 1 7-75 =36

*p <.05; Y(EDN) =1DN 45/ 5. 404 /2(29‘T0322) = (2.54)(2.540) = 6.452 (see text).

A two-sided null hypothesis is rejected if the absolute value of the zDN statistic exceeds or
equals the critical value DN, , , obtained from Appendix Table E.7, where o represents
the familywise error rate; p is the number of treatment means, including the control group
mean; and v is the degrees of freedom associated with the denominator of the zDN statistic.
A one-sided null hypothesis is rejected if the absolute value of tDN exceeds or equals
tDN,, , v and the tDN statistic is in the predicted tail of the tDN sampling distribution.
Dunnett’s procedure controls the probability of falsely rejecting one or more null
hypotheses—the familywise error rate. It is not necessary to test the omnibus null
hypothesis using an ANOVA F test prior to using the DN statistic. Indeed, such a test
would be pointless.

§ Instead of computing p — 1 test statistics, it is often more convenient to test the p — 1
null hypotheses by comparing each contrast with a critical difference—a value that the
absolute value of a contrast must equal or exceed to be statistically significant. Earlier, I -

. showed that a tDN statistic is significant if
C .}_7_. +c ./Y.'
tDN =7 T > tDNOL/Z;p,V
2]‘JLS'CITOI'
n

1

It follows that the absolute value of any contrast, , that exceeds or

equals

N 2MS,
Y(IADN) =tDNyjp,  ys|—
n

, _
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is statistically significant. The letters \y(2DN) denote the critical difference for Dunnett’s
procedure. The use of a critical difference to test hypotheses is illustrated for the data in
Table 5.3-1, where ¥ is the control group mean. The critical difference that the absolute
value of the contrasts in Table 5.3-1 must exceed or equal for a two-tailed test at the
Oy = .05 level of significance is

WY(DN) = DNy 5/5. 5,40 /39—9—'903—22) = (2.54)(2.540) = 6.452

Because the absolute values of contrasts s, /,, and \J; exceed the critical difference, the
associated null hypotheses can be rejected.

Dunnett’s procedure also can be used to establish p — 1 simultaneous 100(1 — a)%
confidence intervals involving the control group mean. A confidence interval is given by

W, —Y@EDN) < y; <\, +;(tDN)

where

W, =c;Y; tepYy

2MS,

€ITor
/25 p,v

y(tDN)=tDN,,
n

Y;=cl;+cpl g

The following assumptions are associated with using Dunnett’s DN statistic to test a
hypothesis or construct a confidence interval: (1) The observations are drawn from nor-
mally distributed populations; (2) the observations are random samples from the popula-
tions, or the experimental units are randomly assigned to the treatment levels; (3) the p — 1
correldtions between contrasts are equal to 0.5; and (4) the variances of the populations are
equal. Dunnett (1964) has described modifications of his procedure that can be used when
the variance of the control group population is not equal to the variance of the p — 1 treat-
ment groups. Hochberg and Tamhane (1987, pp. 140—144) provide tables that can be used
when the correlation between two contrasts is not equal to 0.5—a situation that arises
when the sample ns are not equal.

5.4 Procedures for Testing C a Priori
Nonorthogonal Contrasts

In designing an experiment, a researcher usually has a specific set of C hypbthesesthat the -
experiment is designed to test. Before the research begins, not only is the number of
hypotheses known but also which hypotheses are to be tested. Often the associated
contrasts are not orthogonal as in comparing a control group mean with p — 1 experimental
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group means or making selected pairwise comparisons among p means. The procedures
described in this section can be used to test hypotheses for C a priori nonorthogonal
contrasts among p means. A number of multiple comparison -procedures have been
developed for this purpose. Three are described here: the popular Dunn test, the slightly
more powerful Dunn-Sidak test, and the less widely used but more powerful Holm test.
The three tests are presented in order of increasing power.

Dunn’s Multiple Comparison Test

Fisher described two multiple comparison procedures in his classic experimental design
text (Fisher, 1935a, Section 24). One of the procedures bears his name—the Fisher LSD
test—and is described in Section 5.1. The originator of the second procedure is unknown.
Because Dunn (1961) examined the properties of the second procedure and prepared tables
that facilitate its use, the procedure is referred to as Dunn’s multiple comparison proce-
dure. Some writers use the designation Bonferroni procedure because the procedure is
based on the Bonferroni or Boole inequality.

Dunn’s procedure controls the long-run average number of erroneous statements
made per family—the per-family error rate. This is accomplished by dividing Oy into
C > 2 parts: op/C = 0. If each of the C contrasts is tested at the o level of significance,
the error rate for the collection of C contrasts is Olpp = > < 0. For example, if a researcher
wants to test C = 4 contrasts and wants the per-family error rate to be .05, each contrast
can be tested at of =.05/4 = .0125Tevel of significance. By testing each contrast at o' =
10125, the per-family error rate is Opg = .0125 +.0125 + 0125 +.0125 = .05. -

Dunn developed the procedure using Student’s ¢ statistic and sampling distribution.
However, the procedure can be used with other test statistics and sampling distributions,
which helps to account for its popularity. When Student’s # statistic and sampling distribu-
tion are used with Dunn’s procedure, the statistic is denoted by zD:

D —
2 c;Y; - = _
1 ] .j » 80
p=i___J _alitolhttol,
6 2 2 2 2
Vi Z ¢ c c c
J 1 2 p
MSerrorZ— MSerror S
]:1"1]- }’ll n2 np

For pairwise contrasts with equal sample sizes, the statistic simplifies to
W, o tre Yy
2MSerr0r

n

tD

6\lfi
A two-sided null hypothesis is rejected if the absolute Vglue of the £D statistic exceeds or
equals the critical value Dy, ¢ v obtained from Appendix Table E.14, where o is the per-
family error rate, C is the number of contrasts, and v is the degrees of freedom associated
with the denominator of the D statistic. A one-sided null hypothesis is rejected if the
absolute value of 7D exceeds or equals Dy, ¢ , and the D statistic is in the predicted tail
of the tD sampling distribution. Dunn’s procedure controls the per-family error rate at Olpg;

_
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hence, the familywise error rate is less than oipy. It is not necessary to test the omnibus null
hypothesis using an ANOVA F test prior to using the D statistic.

Suppose that a researcher is interested in testing hypotheses for the four nonorthogo-
nal contrasts in Table 5.4-1. The ¢D test statistics are

D= }T]i _ clY1+02Y2+---+chP
o 2 2 2
V; C
\/MSWG[C—1+C—2+-~-+—P]
noon n,
oo (1)3.67;(;1)48.7 __ _;23280 o
(o) __ .
Vi g 0300l W, D7
9 o |
oo 367+ (;1)43.4 __ —26.51%0 ~ ved
(o} . .
Y2 b 0320] W7, ED”
oo _ (1)47.2F+ (D403 _ g.zgg o
6 2 2 .
Yo 19.0322 %+%}

=-0.50

o 29.0322 (%92 + (%9)2 + %22 9 9%

The critical value, 2D 5. 4,40 Tequired to reject the two-sided null hypotheses is, according
to Appendix Table E.14, equal to 2.616. Because the absolute value of the D statistic for
contrasts ;, {,, and \r; exceeds the critical value, the associated null hypotheses can
be rejected.

Appendix Table E.14 contains critical values for one- and two-tailed tests. Microsoft’s
Excel TINV function can be used to obtain critical values for one- and two-tailed tests for any
per-family significance level. To obtain a critical value, access the TINV function in Excel,

TINV (probability,deg_freedom)

and replace “probability” with the value of opy/C for a two-tailed test and with (Lopp)/C

for a one-tailed test and “deg_freedom” with the degrees of freedom for MS,.,. For

example, if one-sided null hypotheses had been proposed for the contrasts in-Table 5.4-1,
the required value of tD 5. 4. 490 would be given by ' .

TINV[(2)(.05)/4,40] = TINV(.025,40)

and would be 2.329.
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Table 5.4-1 » Coefficients for C a Priori Nonorthogonal Contrasts [Data are from Section 5.2, where
MSWG=129.0322,p=5,n=9,and v=p(n—1)=50 - 1)=40.]

Sample Means
¥,=367 T, =487 Y3 =434 Y,=472 Y5 =403
Coefficients of Contrasts
2 1 -1 0 0 0 Y,-Y, =-12.0
Wy 1 0 -1 0 0 Y,-Y3= 67
\’l\l3 0 0 0 1 -1 I_{4 - }_{5 = 6.9
2 1 1 1 L _1 T +h+7 Ya+¥s _ 4
3 3 3 2 2 3 2

Dunn’s procedure can be used to establish simultaneous 100(1 — o)% confidence
intervals. A confidence interval is given by

¥, - YD) < vy; < W + (D)

where

n

V=0 +op +te, Y,

.G, L
\‘Vl(tD)=t‘D0,/2,C,V MSCITOI‘ —_— =t
moom n

W =cly T ol e,

The popularity of Dunn’s multiple comparison procedure can be attributed to three
factors: (1) The procedure provides a simple way to control the per-family and, hence,
the familywise Type I error; (2) the concept of dividing opp among C a priori contrasts
is a simple one that can be used with any test statistic; and (3) the procedure is flexible,
as the following example illustrates. If a researcher considers the consequences of mak-
ing a Type I error to be equally serious for all C contrasts, it is reasonable to divide Oipp
equally among the contrasts. If, however, the consequences of making a Type I error are
not equally serious for all C contrasts, Opp can be allocated uneqiially among the con-
trasts in a manner that reflects the researcher’s a prioti concern for Type I and Type II
errors. Consider, for example, an experiment involving four contrasts in which the .05
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level of significance has been adopted. Instead of testing each contrast at o" = .05/4 =
.0125, the researcher could allocate o as follows: o =.02, aj = .01, af = .01, o} =
.01. The per-family error rate is Opp = .02 + .01 + .01 + .01 = .05, which is the same
per-family error rate that would be obtained if opp were divided equally among the four
tests. :

As I have shown, Dunn’s procedure has a number of desirable properties. The Dunn-
Sidak procedure described next shares most of these properties and is slightly more power-
ful; hence, it is preferred over Dunn’s procedure.

Dunn-Sidak Multiple Comparison Test

Dunn’s procedure provides an upper bound to the familywise Type I error rate. For small
values of opp, the approximation of the exact familywise Type I error is excellent. However,
an even better approximation is provided by a multiplicative inequality proved by Sidak
(1967). He showed that the familywise error rate for C nonindependent tests is less than or
equal to Oy < 1—(1—0o')<, which is always less than or equal to app = Y.<, 0". To control
the familywise error rate, each contrast can be tested at the 1— (l—och)l/ € = o level of
significance. For example, suppose a researcher plans to test five nonorthogonal contrasts
and wants the familywise Type I error rate to be less than or equal to .05. Use of the additive

and multiplicative inequalitieg results in testing each contrast at, respectively,

Additive inequality o/ = opp/C = .05/5 = .01

Multiplicative inequality o = 1—(1— 0ty )’ =1 — (1 —.05)¥5 = 0102
Because the Dunn-Sidék procedure is slightly more powerful, it is recommended over
Dunn'’s procedure.

When Student’s ¢ statistic and sampling distribution are used with the Dunn-Sidak
procedure, the statistic is denoted by ¢DS:

P —
2cY; = — _
) ] 'J D
(DS = Vi __ = _ gYi+eYo+-tc, Y,
& 2 2 2 2
Vi £ ¢ ¢ c c
] 1 2 p
MSerror 2 - MSmor — =t
J:lnj n] nz np

A two-sided null hypothesis is rejected if the absolute value of the DS statistic exceeds or
equals the critical value DS, ¢ , obtained from Appendix Table E.15, where o denotes
the familywise error rate, C is the number of contrasts, and v is the degrees of freedom
associated with the denominator of the #DS statistic. A one-sided null hypothesis is rejected
if the absolute value of DS exceeds or equals DS, . , and the DS statistic is in the
predicted tail of the zDS sampling distribution. )
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For the four contrasts in Table 5 4-1, the values of the Dunn-Sidak test statistic are the
same as those for Dunn’s procedure:

DS =1 = —12.000 _ 45y pg=t2-= 6.700 _ _; 64
c 2.540 Gy 2.540
1 2
ps= Vs 8990 59 tDS:-}‘i“—JO'S” =050
Y, 2540 6y, 1640

The critical value, DS gsp; 4, 400 required to reject two-sided null hypotheses for these
contrasts is 2.608, according to Appendix Table E.15. This critical value is slightly smaller
than that for Dunn’s procedure, which is 2D g5/, 4,40 = 2.616. Thus, the Dunn-Sidédk
procedure is slightly more powerful. Both procedures result in rejecting the null hypotheses
for contrasts y, Yy, and Ws.

The computation of confidence intervals for the Dunn-3idék procedure follows that
for Dunn’s procedure. The term Y(tD) in Dunn’s confidence interval is replaced with

Y (tDS) , where

¢ L%
W(tDS):tDSa/Z,C,V MSGHOI ——+——+..-+____.
moom n,

Use tDSyp, ¢,y fora two-sided confidence interval and DS, ¢ v for a one-sided confidence
interval. -

Appendix Table E.15 gives critical values for oy = 20, .10, .05, and .01. Microsoft’s
Excel TINV function can be use 0 obtain critical values for any familywise significance
level 3 To obtain critical values, access the TINV function in Excel, ’

TINV (probability,deg_freedom)

and replace “probability” with the value of 1 — (1 — otpy)V/C for a two-tailed test and with
2[1 — (1 — otpyy) €] for a one-tailed test and “deg_freedom” with the degrees of freedom
for MS,. For example, if one-sided null hypotheses had been proposed for the contrasts
in Table 5.4-1, the required value of £DS gs; 4, 40 would be given by

TINV{2[1 — (1 — .05)141,40} = TINV(.02548,40)

and would be 2.321.
The assumptions associated with using the Dunn and the Dunn-Sidak procedures arc

the same as those described earlier for Student’s ¢ statistic. Comments about the effects o
nonnormality and heterogeneous variances on Student’s 7 statistic also apply to the Dum
and Dunn-Sidak statistics. Martin, Toothaker, and Nixon (1989) evaluated 19 multipl

3procedures for obtaining familywise critical values and p values using S-Plus, SAS, and SPSS ar
described by Kirk and Hetzer (2006, pp. 149-153).
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comparison procedures and concluded that both the Dunn and Dunn-Sidék procedures
provide excellent Type I error rate protection when the assumptions of normality and
homogeneity of population variances are not tenable. If a researcher is concerned about
the heterogeneity of population variances, the ¢’ statistic with Welch’s modified degrees of
freedom, discussed in Section 5.2, can be used with the Dunn and Dunn-Sid4k procedures.

Holm’s Sequentially Rejective Bonferroni Test

Holm (1979) proposed a modification that converts Dunn’s (Bonferroni) single-step pro-
cedure into a more powerful step-down procedure. The modification is quite simple. It
consists of ranking the absolute value of C test statistics from the largest to the smallest
and then testing the largest test statistic at the of = opp/C level of significance, the next
largest test statistic at oty = Opp/(C — 1), the next largest at o3 = Opg/(C —2), . . ., and the
smallest test statistic at 0. = Oipp. The testing procedure terminates when a nonsignificant
test statistic is encountered. If the sample sizes are not equal, the test statistics should be
ranked on the basis of the p values of the test statistics. Holm showed that the procedure
controls the familywise Type I error rate at less than Oy Holm’s procedure is more pow-
erful than Dunn’s procedure because it uses a less stringent level of significance for the
second through the Cth tests. Recall that Dunn’s test is a single-step procedure that uses
the same o’ = apy/C level of significance for all tests.

Holm suggested that a slightly more powerful version of the test could be obtained by
using the multiplicative inequality instead of the additive inequality. If the multiplicative
inequality is used, the largest test statistic (or smallest p value) is tested at the o =
1-(1- OLFW)V € level of significance, the next largest at oy =1-(1—Opy )1/ €D the next
largest at of =1—(1—0ipy )", . . ., and the smallest test statistic at 01 = Oy Holm’s
procedure is a general one that can be used with #, ¢, and F statistics. When Student’s ¢
statistic and sampling distribution are used with Holm’s procedure, the statistic is denoted
by tH: '

D —
Yc.Y — — _
s J ] DR
tH = v _ j=1 q Y +c, Yo+ +cp Y‘p
6 2 2 2 2
V; pC c c
J C o -
MSertor 2 P MSqpor | —+—=+-+
Jj=11; nom n

Critical values of tH for C;=C, C—1,C—2,.. ., 2 can be obtained from Appendix Table
E.15. This table contains critical values for the Dunn-Sidék test, DS, 12 ¢, v - Critical
values for C; =1 can be obtained from Appendix Table E.3, which contains critical values
for Student’s 7 test, 7y, . A two-sided null hypothesis is rejected if the absolute value of
the ¢/ statistic exceeds or equals the critical value DS, ;. . y Of Zyp y, Where o denotes
the familywise error rate; C; is equal to C for the largest test statistic, C — 1 for the next
largest test statistic, . . . , and 1 for the smallest test statistic; and v is the degrees of freedom
associated with the denominator of the ¢H statistic. A one-sided null hypothesis is rejected
if the absolute value of tH exceeds or equals DSy, ¢,y for C;=2 or ¢, , for C;= 1 and the
tH statistic is in the predicted tail of the sampling distribution.
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Holm’s procedure is illustrated for the four contrasts in Table 5.4-1. The first step in
testing the null hypothesis for these contrasts is to rank the absolute values of the test
statistics from largest to smallest. The statistics and critical values for the four contrasts
are as follows:

Absolute Value of Test Statistics

Ranked From Largest to Smallest Critical Value
tH = }V—l- = 1—2—0—09 = 472* tDS‘OS/Z‘ 4. 40 = 2608
Gy 2.540 7
1
Oy 2.540
3
= Y2 6700 s err tDS s/ 2. 40 = 2-323
Gy 2.540 7
2
tH :—}L“—z 0.817 =0.50 v t.05/2, 40 = 2.021
Oy, 1.640

The asterisks identify significant test statistics. The null hypothesis for contrasts Yy, W,
and s, can be rejected. The critical values required to reject the null hypotheses for the
Dunn and Dunn-Sidak procedures are:

Dunn’s procedure tD o512, 4, 40 = 2.616
Dunn-Sid4k procedure tDS gsp; 4, a0 = 2-608

In this example, all three procedures lead to the same decisions. However, Holm’s
procedure is clearly more powerful than the Dunn and Dunn-Sidak procedures. Because
all three procedures control the Type I error rate at or less than iy, a researcher is advised
to use the most powerful procedure, which is Holm’s procedure. Holm’s procedure shares
a disadvantage of most multiple-step procedures: It cannot be used to construct confidence
intervals. ¢

The assumptions associated with using Holm’s procedure are. the same as those
described earlier for Student’s # statistic. Comments about the effects of nonnormality and
heterogeneous variances on Student’s ¢ statistic also apply to Holm’s procedure. If a
researcher is concerned about heterogeneity of population variances, the ¢’ statistic with
Welch’s modified degrees of freedom, discussed in Section 5.2, can be used with Holm’s
procedure. '

A number of modifications of Holm’s procedure have been proposed (Holland &
Copenhaver, 1987; Shaffer, 1986). These modifications result in a slight increase in power

1—-—\M
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but at the cost of increased complexity. Tables for implementing Shaffer’s modifications
of Holm’s procedure are provided by Seaman and Serlin (1989). A. Y. Gordon and
Salzman (2008) provide a thorough examination of the merits of Holm’s procedure rela-
tive to other step-down procedures.

5.5 Procedures for Testing All Pairwise Contrasts

Tukey’s HSD Test ~

A variety of procedures have been recommended for testing hypotheses about all pairwise
contrasts. Probably the most widely used procedure is the HSD (honestly significant dif-
ference) test developed by Tukey (1953). This single-step procedure controls the family-
wise Type I error rate for the collection of all a posteriori pairwise contrasts. Tukey’s HSD
test is based on the sampling distribution of the Studentized range, which, like the 7 distri-
bution, was derived by William Sealey Gosset. The letter ¢ is used to denote the
Studentized range distribution. Tukey’s HSD statistic, g7, is the ratio of a contrast to the
standard error of a mean:

o = Wi _ c; Y +ep Yy
7 MS

€1ror

o

n

A two-sided null hypothesis is rejected if the absolute value of gT" exceeds or equals the
critical value g, ,, , obtained from Appendix Table E.6, where o denotes the familywise
error rate, p is the number of means in the family, and v is the degrees of freedom
associated with the denominator of the g7 statistic. Note that the critical value for Tukey’s
test, unlike that for the Dunn, Dunn-Sidék, and Holm tests, does not depend on the number
of contrasts actually tested but on p, the number of means. Tukey’s procedure, like all a
posteriori procedures, is appropriate for testing only two-sided null hypotheses. The
procedure has another limitation: It requires equal sample #s. If the sample ns are not
equal, the Tukey-Kramer procedure, described later, can be used.

Tukey’s statistic can be used to test the omnibus null hypothesis, i; = W, =---= L, by
comparing the largest sample mean with the smallest sample mean. If Tukey’s statistic
exceeds or equals g, , , for this contrast, the omnibus null hypothesis is rejected.
Alternatively, the omnibus null hypothesis can be tested using the ANOVA F statistic. The
omnibus ¢T test is usually slightly less powerful than the F test, although there are some
configurations of means for which the T test is more powerful. For example, a g7 test is
more likely to reject the omnibus null hypothesis if p — 2 of the population means are equal
and located halfway between the smallest and largest means. On the other hand, an F test is
more likely to reject the omnibus null hypothesis if half of the means are equal to the largest
mean and the other half are equal to the smallest mean. Both the. /" and g7 tests control the
familywise error rate at or less than Olgy; hence, the more powerful test should be used.

When a researcher wants to test all pairwise contrasts among p means and the sample
ns are equal, it is usually more convenient to compute the one critical difference that each
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contrast must exceed or equal than it is to compute p(p — 1)/2 test statistics. The critical
difference, \(qT), that a pairwise contrast must exceed or equal is given by

MSCITOI'

\p(qT)ZQa;p,v .

Suppose a researcher wants to test all pairwise contrasts for the data in Table 5.5-1.

Table 5.5-1 w Absolute Values of All Pairwise Contrasts Among Means [Data are from
Section 5.2, where MSWG = 29.0322,p =5,n=9,and v = pn—-1)=
5(9 — 1) = 40. The means in the table are ordered from the smallest to the
largest so that the absolute value of the largest contrast, 12.0, appears in the
upper right corner of the table.]

¥, =367 Y5 =403 Yy =434 Y, =472 Y, =487
Y, =367 — 3.6 6.7 10.5* 12.0%
Y5 =403 — 3.1 6.9 8.4%
Y, =434 — 3.8 53
Y, =472 — 1.5
Y, =487 —
29.0322

*p <05 ¥(gT) =g, 55,40 . - (4.04)(1.796) = 7.26.

The critical difference is

’ . ' [29.0322
W(gT) =9q.0s,5, 40 5 = (4.04)(1.796) = 7.26 »

Tt is often convenient to construct a table like Table 5.5-1 that gives the absolute value of
all pairwise contrasts. Any contrast that exceeds or equals the critical difference is declared
significant. It is apparent from Table 5.5-1 that three contrasts exceed the critical
difference; hence, the null hypotheses for these contrasts can be rejected.

Tukey’s procedure can be used to establish 100(1 — )% simultaneous confidence
intervals for all pairwise population contrasts. The confidence interval is given by

W, =Y (qT) <y, <W; +9(gT)

Earlier I noted that Tukey’s procedure requires equal-size samples. In addition,
the procedure assumes that (1) the observations are drawn from normally distributed

| |
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populations; (2) the observations are random samples from the populations, or the experi-
mental units are randomly assigned to the treatment levels; and (3) the variances of the
populations are equal. The next two sections describe procedures for testing all pairwise
contrasts that do not require equal sample sizes or the assumption that the population vari-
ances are equal.

Procedures for Unequal Sample Sizes

Researchers in the social sciences and education frequently want to test all pairwise con-
trasts among means. Many of the most popular multiple comparison procedures used for
this purpose, such as Tukey’s HSD test, require equal sample sizes. Unfortunately,
researchers live in an imperfect world in which unequal sample sizes are the rule rather
than the exception. This dilemma has sparked a search for alternative procedures that can
be used when sample sizes are unequal. Most of the research has focused on finding alter-
natives to Tukey’s HSD test. Suggested alternatives include Gabriel’s (1978) test, Genizi
and Hochberg’s (1978) test, Hochberg’s (1974) GT2 test, Hunter’s (1976) H test, Spjetvoll
and Stoline’s (1973) T” test, and the Tukey-Kramer test (Kramer, 1956; Tukey, 1953). The
results of numerous studies of the various alternatives are clear cut: The preferred proce-
dure is the Tukey-Kramer test. This procedure controls the Type I error at less than Otpy,
and has the highest power of the procedures investigated (Dunnett, 1980a; Hayter, 1984;
Stoline, 1981).

Tukey-Kramer test. The Tukey-Kramer test was independently proposed by Tukey
(1953) and Kramer (1956) for the case in which the sample ns are unequal and the basic
assumptions of normality, homogeneity of variances, and so on are tenable. The test sta- -
tistic, denoted by ¢7K, is ‘

A

Oy 1 1
\/[MSem (n—+ . H /2
iy

A two-sided null hypothesis is rejected if the absolute value of g7K exceeds or equals the
critical value g, , , obtained from the Studentized range distribution in Appendix
Table E.6, where o denotes the familywise error rate, p is the number of means in the family,
and v is the degrees of freedom associated with the denominator of the g7k statistic.

Procedures for Heterogeneous Variances

A variety of procedures have been proposed for testing hypotheses about all pairwise con-
trasts. among p means when the population variances are heterogeneous. The leading
contenders are Dunnett’s (1980b) 73 and C tests and the Games-Howell GH test (Games
& Howell, 1976). All three tests can be used when the sample sizes are unequal. However,
if the population variances are homogeneous, the Tukey-Kramer procedure is recom-
mended because of its superior power.
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Dunnett’s T3 test. The test statistic for Dunnett’s 73 procedure, denoted by m73, is

A two-sided null hypothesis is rejected if the absolute value of mT3 exceeds or equals the
critical value my, .\, obtained from the Studentized maximum modulus distribution in
Appendix Table E.16, where 0. denotes the familywise error rate, C = p(p — 1)/2, and Vv’
denotes the use of Welch’s modified degrees of freedom, discussed in Section 5.2:

3 +
n;(n;—1) nj,(nj,—l)
Dunnett’s C test. The test statistic for Dunnett’s C procedure, denoted by gC, is

: JC= ch,j+c.,Y,.,
63 8%
L+ T 1/2
n;  ny

A two-sided null hypothesis is rejected if the absolute value of gC exceeds or equals the

critical value
&2 o 6?-'
qo‘;P,V +q0’ P,V“
nj nj’
9Cop,v =

a;p,V ) ~
s

where g, v, is obtained from the Studentized range distribution, o denotes the
familywise error rate , p is the number of means in the family, and v; is equal to n;— 1. T his
critical value is based on Cochran’s (1964) approximate solutlon to the Behrens-Flsher
problem discussed in Section 5.2.

Games-Howell test. The test statistic for the Games-Howell procedure, denoted by ¢GH,
is

qGH— = i
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A two-sided null hypothesis is rejected if the absolute value of gGH exceeds or equals the
critical value g, , , obtained from the Studentized range distribution in Appendix Table
E.6, where o denotes the familywise error rate, p is the number of means in the family, and
v’ denotes the use of Welch’s modified degrees of freedom. The formula for v'is the same
as that given earlier for Dunnett’s 73 procedure.

The relative merits of these multiple comparison procedures and others that have been
recommended for the case of heterogeneous variances and unequal sample sizes have been
investigated by a number of researchers (Dunnett, 1980b; Games, Keselman, & Rogan,
1981; H. J. Keselman & Rogan, 1978; Tamhane, 1979). The results of these investigations
can be summarized as follows:

1. The Games-Howell procedure is always more powerful than Dunnett’s C proce-
dure. However, the Games-Howell procedure becomes liberal with respect to the
familywise Type I error rate as the variances become more similar. The procedure
is the clear choice if the population variances are known to be unequal.

2. The C procedure is more powerful than the 73 procedure when the number of error
degrees of freedom is large and less powerful when the number is small. Both
procedures control the familywise Type I error rate. Either the 73 or the C proce-
dure is a better choice than the Games-Howell procedure if control of the family-
wise Type I error rate is especially important and the population variances are
believed to be similar.

Fortunately, the use of these procedures, particularly the Games-Howell procedure, does
not lead to a substantial loss of power relative to procedures that assume equal variances.

Fisher-Hayter Test

Hayter (1986) proposed a modification of Fisher’s LSD test that can be used to test
hypotheses about all pairwise contrasts. This two-step procedure, which assumes equal
variances, controls the familywise Type I error at Oy When the sample ns are equal or
when the sample zs are unequal and the number of means is p = 3. When the sample zs
are unequal and p > 3, the Type I error rate cannot exceed Oy The procedure, which is
called the Fisher-Hayter test, has two steps. In the first step, the omnibus null hypothesis
is tested at the o” = oy significance level using either an F' or a g statistic. The critical
values for I and g are denoted by, respectively, Fy., ,, and g, ,, where g, , , is
obtained from Appendix Table E.6 and v denotes the degrees of freedom for MS, . If this
test is not significant, the omnibus null hypothesis is not rejected and no more tests are
performed. If the omnibus null hypothesis is rejected, each of the pa1rw1se contrasts is
tested at the o” = oy, significance level using

-E)

e A ;¥ +er¥y
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A two-sided null hypothesis is rejected if the absolute value of gFFH exceeds or equals the
critical value g, , ; v obtained from the Studentized range distribution in Appendix Table
E.6, and o denotes the familywise Type I error. Note that the table is entered for p — 1
means instead of p means. The Fisher-Hayter procedure shares a disadvantage of most
multiple-step procedures: It cannot be used to construct confidence intervals. The
assumptions associated with the procedure are the same as those described earlier for
Student’s ¢ statistic (see Section 5.2).

When a researcher wants to test all pairwise contrasts among p means and the sample
ns are equal, it is usually more convenient to compute the one critical difference that each
contrast must exceed or equal than it is to compute p(p — 1)/2 test statistics. If the omnibus
null hypothesis is rejected, the critical difference, \(qFH), that a pairwise contrast must
exceed or equal is given by

A m T
W(aFH) = q; p-1,v —“:r—o

For the data in Table 5.5-1, the critical difference is

29.0322

Y(aFH) = 405, 4 40 = (3.79)(1.796) = 6.81

With this critical difference, four contrasts in Table 5.5-1 can be rejected—one more than
was rejected using Tukey’s critical difference. This result is not surprising. Seaman, Levin,
and Serlin (1991) compared 23 multiple comparison procedures in terms of familywise
Type I error protection and power. They concluded that the Fisher-Hayter test was just
slightly less powerful than the most powerful procedures—the REGW and Peritz tests—
and represented an excellent trade-off between power and ease of application.

It is instructive to compare the critical difference for the Fisher-Hayter procedure,
W (gFH) = 6.807, with those for the Tukey, Dunn, and Dunn-Sidak procedures. When the
procedures are used to make all 10 pairwise comparisons among the five means, the criti-
cal differences that each contrast must exceed to be significant are

Fisher-Hayter critical difference J(¢FH)=qFH ys. 4, 40,/29 0322 =(3.79)(1.796) = 6.81

Tukey critical difference V(gT)=qs:s, 40‘/29 0322 =(4.04)(1.796) =7.26
Dunn critical difference (D) = tDgs/9.10, 4014 / 229. 0322) =(2.971)(2.540)=17.55

Dunn—éldék Critical diffel‘ence \’l\f(tDS) = tDS.Os/z; 10, 404 ’2%22—) = (2.963)(2.540) = 7.53

It is apparent that when all pairwise contrasts are tested the Fisher-Hayter procedure is
more powerful than the other procedures. However, the Dunn and Dunn-Sidak procedures
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r

become more powerful relative to the Fisher-Hayter procedure as the number of
comparisons among the p means is reduced. For example, if a researcher had planned to
make only 4 instead of all 10 pairwise comparisons, the critical difference for the Dunn-
Sidak procedure would have been

W (DS) = DS 45,5, 4 10 —2—(—23';)—3—22 = (2.608)(2.540) = 6.62

which is less than the 6.81 required for the Fisher-Hayter procedure.
Holm’s procedure also is more powerful than the Fisher-Hayter procedure if only four
pairwise contrasts are tested. The critical differences for four contrasts are as follows:

G(H) = DS g5 4 404 /w = (2.608)(2.540) = 6.62
Y(H) =1DS 515, a0, /w — (2.492)(2.540) = 6.33

- The point of this discussion is that for a priori contrasts, a researcher should carefully
consider which multiple comparison procedure provides the desired Type I error protection
and maximizes power.

REGW F, FQ, and Q Tests

T. A. Ryan (1959, 1960) proposed a step-down multiple comparison procedure for testing
hypothlieses for all pairwise contrasts. The procedure can be used with either F or g statis-
tics. His procedure, which is more powerful than the Tukey and Fisher-Hayter procedures,
uses adjusted significance levels denoted by o.,.. To use Ryan’s procedure, the means are
ordered from the smallest to the largest mean. A contrast involving the smallest and largest
means is said to be separated by » = p steps (the number of means). This contrast is tested
at the o, = opp(7/p) level of significance, where » = p. If and only if the contrast is sig-
nificant, the two contrasts involving means separated by » = p — 1 steps are tested at the
o, = Opp(7/p) level of significance, and so on. Consider an example with p = 5 means; let
Oy = .05. Means separated by » = 5 steps are tested at the o = .05(5/5) = .05 level of
significance, means separated by » = 4 steps are tested at the aj =.05(4/5) = .04 level of
significance, . . . , and means separated by 7 = 2 steps are tested at the o =.05(2/5) =.02
level of significance. If the null hypothesis for a contrast is not rejected, by implication the
null hypotheses for all contrasts encompassed by the nonrejected contrast are not rejected.
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such as Tukey’s procedure.

The advantage of Ryan’s procedure is that it controls the familywise Type I error at less
than o pp and has greater power than procedures that use a uniform level of significance,

Einot and Gabriel (1975) used Ryan’s idea of adjusted significance levels but
replaced the Bonferroni additive inequality with the multiplicative inequality; means
separated by r steps are tested at the o =1 — (1 - opw)? level of significance. This
modification results in slightly more powerful tests. For example, means separated by

Table 5.5-2 m Computational Procedures for the REGW FQ Test [Data are from Table 5.5-1, where
MSWG =29.0322,p=5,n=9,and v = p(n — 1) = 5(9 — 1) = 40. To simplify the
presentation, the means have been relabeled so that Y. Y, denotes the smallest mean and
Y denotes the largest mean: Y, =36.7, ¥, =403 Y, =434, 7, =472, Y5 =48.7]

REGW Critical
Number of Means Hypothesis F Statistic Value and Decision*
F o5, 4,20 = 2:61
5 By =Wy =H3 =Hq =Us 7.51 S
Number of Steps . REGW Critical
Between Means Hypothesis | g Statistic | Value and Decision*
q.05; 4,40 = 3-79
5 W —Hs= 0 6.68 S
9.05;4,40= 379
4 Hy—Hs =0 5.85 S
4 Hy—ls=0 4.68 S
9.0303; 3, 40 = 3-73
3 Hi—H3=0 3.73 S
3 Hy—pg =0 3.84 S
3 l.l3 - !"’5 = O 295 NS
9.0203; 2, 40 = 340
2 , By —Hp =0 2.00 NS
2 Hy—l3 =0 1.73 NS
2 H3—Hg=0 2.12 NSI
2 Hg—Hs=0 .84 NSI

*§ = significant; NS = not significant; NSI = not significant by implication.
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four steps are tested at the o =1 — (1 —.05)*° =.0402 level of significance instead of
the o) =.05(4/5) = .04 level. Welsch (1977) further improved the procedure by showing
that means separated by » = p — 1 steps also could be tested at the same o level as
means separated by » = p steps and still control the familywise Type I error at less than
Oy Ryan’s idea of adjusted significance levels has undergone numerous modifications
and has appeared under a number of different names.* To give the major contributors—
Ryan, Einot, Gabriel, and Welsch—their just due, the procedure is referred to as the
REGW procedure. The designations REGW F and REGW Q are used to distinguish
between the F and g versions of the test.

Shaffer (1979) proposed yet another improvement on Ryan’s idea of adjusted signifi-
cance levels that can be used with any step-down ¢ procedure. The improvement consists
of first performing an omnibus ANOVA F test on the p means. If the F test is not signifi-
cant, the testing sequence terminates. If the F test is significant, means separated by r = p
steps are tested using the g critical value appropriate for means separated by »=p — 1 steps.
Subsequent tests are performed with the usual g critical values. This procedure is referred
to as the REGW FQ procedure.

The REGW FQ procedure is illustrated in Table 5.5-2. The procedure begins with an
F test of the omnibus null hypothesis. The F test statistic is

N —_ S j— 2 N
7o Miotmens _t * T A7) 3T 8723880

MS,., (s —)MSWG (5-1)29.0322

where s = 5. The critical value is Fy, \, y = Fos; 4,40 = 2.61; hence, the omnibus null
hypothesis is rejected. Following the rejection of the omnibus null hypothesis, all pairwise
contrasts are tested using the gREGW test statistic:

qrEGw =i S Tty
6‘4’:‘ %

n

A two-sided null hypothesis is rejected if (1) the absolute value of gREGW exceeds or
equals the critical value g, obtained from the Studentized range distribution in

“The following names have been used: (1) modified Ryan’s test (Jaccard, Becker, & Wood, 1984),
(2) REGWF and REGWQ tests (SAS Institute, Inc., 1985), (3) revised Ryan’s procedure (Ramsey,
1978), (4) Ryan’s procedure (Einot & Gabriel, 1975; Ramsey, 1981), and (5) Tukey-Welsch proce-
dure (Hochberg & Tamhane, 1987, p. 69; Lehman & Shaffer, 1979).
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Table 5.5-3 « Computational Procedures for the REGW F Test [Data are from Table 5.5-1,
where MSWG =29.0322, p=5,n=9, and v =p(n — 1) =509 — 1) = 40.
The means have been relabeled so that Y, denotes the smallest mean and
¥, denotes the largest mean: ¥; =36.7, ¥, =403, ¥, =43.4, ¥, =47.2,

Y5 =48.7.]
’ REGW Critical
Number of Means Hypothesis F Statistic Value and Decision*
Fos, 4 40= 261
y 5 My =My =H3 =py = s 751 S
» , Fos;3, 40 = 2.84
4 Hy =My =H3=Hy 6.19 S
Hy=Hy=H3=}s 8.01 S
y Hy =Ky =y =Hs 10.01 S
By =H3=Hg=Hs 8.88 S
My =Hg=Hs=Us 4.46 S
F 303, 2, 40 = 3-82
3 Wy =My = U3 3.49 NS
Hi=Hy=Hy 8.83 S
! Uy =Hy =Us 11.76 S
L Ly = Mg =My 8.76 S
Wy =My = Us 11.21 S
My =Hy = Hs 13.25 S
My =Mz =y 3.70 NS
Hy = M3 = s 5.59
My =Hy=Hs 6.22 ﬁ
Ha =y = s 2.31 NS
F 0003; 1, 40 = 5-84
2 B =Hy 2.01 NSI
Wy = U3 6.96 NSI
I =y 17.09 S
My = s 2232 s
) 1y = i3 1.49 NSI
=y 7.38 NSI
Uy = s 10.94 . S
TRENTH , 224 NSI
g = s 435 NSI
Uy = Us 0.35 NSI

*§ = significant; NS = not significant; NSI = not significant by implication. i

_
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Appendix Table E.6 and (2) the means in the hypothesis are not encompassed by a nonrejected
hypothesis at an earlier stage in the testing procedure. The critical value, g, ,. ., for means
separated by » = 5 steps is g5 4 40 = 3.79, where 05 =1—(1 - .05)%> = .05 (Einot and
Gabriel’s contribution), # = 5 — 1 = 4 (Shaffer’s contribution), and v = 40. The remaining
critical values are as follows:

Means separated by » = 4 steps: The critical value is g5 4 40 = 3.79, where o =
1 — (1 —.05)%° = .05 (Welsch’s contribution), =5 —1=4, and v = 40.

Means separated by » = 3 steps: The critical value is g o303, 3 40 = 3.73, where 0 =
1—-(1-.05)%*=.0303,r=5~-2=3,and v =40.

Means separated by 7 = 2 steps: The critical value is g g3 2, 40 = 3-40, where o =
1—(1-.05%=.0203,r=5-3=2,and v=40.

In Table 5.5-2, the following pairwise null hypotheses are rejected: [y — s =0, i, — Uy =0,
W, — Ms =0, W, — Uy =0, and p, — u, = 0. The hypotheses i3 — 1, = 0 and 1, — s = 0 are not
significant by implication because they are encompassed by the hypothesis [; — s = 0,
which was not rejected in an earlier test.

The REGW F procedure is illustrated in Table 5.5-3. The critical values and decisions
(significant, not significant, not significant by implication) are given in the fourth column
of the table. The REGW F procedure resulted in rejecting three hypotheses for pairwise
contrasts: [ = Ly, Il = Hs, and W, = [s. All other hypotheses for pairwise contrasts are not
rejected by implication because they are contained in sets of means—{l; W, U3}, {Hy Us
W4}, and {U; 1y Us}—that were not significant in earlier tests.

The REGW E, FQ, and Q procedures require critical values of o and F that are
not available in the Studentized range and F tables. Values of o, can be obtained by
linear interpolation using the natural log of o . For example, the following informa-
tion from Appendix Table E.6 can be used to obtain the approximate critical value for

q 0303; 3, 40°

Critical Value From

Appendix Table E.6 log, o
q.Ol; 3,40 =437 loge .01 =-4.6052
q.0303; 3, 40 =7 loge .0303 =-3.4966
q_os; 3,40 =3.44 ].Oge .05 =-2.9957

It is apparent that the critical value for g y3¢3. 3, 49 is between 3.44 and 4.37. More precisely,
the critical value is

log,.0303—log, .05 _ ~3.4966—(-2.9957) _ ~0.5009 _ ..,

log,.01-log,.05  —4.6052—(-2.9957) —1.6094
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through the interval from 3.44 to 4.37. The critical value is
q.0303; 3, 40 = 344 + (0.3112)(4.37 - 3.44)=3.44 +0.2894 =3.73

Microsoft’s Excel FINV function can be used to obtain critical values for F. For example,
the critical value for F 343 o 49 is obtained from the FINV function

FINV (probability,deg_freedom1,deg_freedom2)
FINV (.0303,2,40) = 3.8209

Monte Carlo studies (Einot & Gabriel, 1975; Ramsey, 1978, 1981; Seaman et al.,
1991; Seaman, Levin, Serlin, & Franke, 1990) indicate that multiple comparison proce-
dures that use an F statistic or an omnibus F statistic followed by a g statistic tend to be
slightly more powerful than those that use an omnibus g statistic. These conclusions,
however, are affected by the type of power and the pattern of means and sample sizes that
were investigated. Unfortunately, the F statistic requires a considerable amount of compu-
tation, as can be seen from the example in Table 5.5-3.

The assumptions associated with the REGW F test are the same as those for the
ANOVA F test discussed in Section 3.5. The assumptions associated with the REGW FQO
test are the same as those for the ANOVA F test and Tukey’s HSD test. If the sample sizes
are unequal, the Tukey-Kramer test statistic can be used in place of the gREGW statistic.
If the variances are unequal, one of the test statistics in the section on Procedures for
Heterogeneous Variances can be used.

5.6 Testing all Contrasts Suggested
by an Inspectlon of the Data

Scheffé’s S Test

The fifth common research situation mentioned in Table 5.1-1 involves testing contrasts
suggested by an inspection of the data when that inspection identifies one or more interest-
ing nonpairwise contrasts. The procedure of choice for this situation is Scheffé’s (1953) S
test. The S test controls the familywise Type I error rate for the infinite number of contrasts
that can be performed among p > 3 means. Scheffé’s test is much less powerful than
Tukey’s HSD test, for example, and is recommended only when some nonpairwise con-
trasts are of interest. Scheffé’s procedure uses the F sampling distribution and, like
ANOVA, is robust with respect to nonnormality. The procedure also can be used when the
sample sizes are unequal. Scheffé’s test statistic, denoted by F5, is

2 . i

p . 5
) ch — \2
~ _2_ [j=1 I _ (clY1+czY2+ +e, p)
- - 2
p

q

6\%, c? 2 2
i J
MSerror Z MSerror " + n, + '+n_
1 P
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A two-sided null hypothesis is rejected if FiS exceeds or equals the critical value viF., ., ,
where F,, , is obtained from the F" distribution in Appendix Table E4, v; =p — 1, o denotes
the familywise Type I error rate, and v, is the degrees of freedom associated with MS,.
Scheffé’s procedure is always congruent with the omnibus ANOVA F test. If the
omnibus F test is significant, at least one contrast among the means is significant
according to Scheffé’s test and vice versa. Scheffé’s procedure is one of the most flexi-
ble data-snooping procedures available. But this flexibility comes at a price—low
power. Hence, the procedure should be used only when the hypotheses of interest

include a nonpairwise contrast.

Brown-Forsythe Test

If a researcher is interested in testing all contrasts, including nonpairwise contrasts that
appear interesting from an inspection of the data, and if the population variances are
heterogeneous, then the Brown-Forsythe (Brown & Forsythe, 1974a) procedure can be
used. The procedure, which is a modification of Scheffé’s procedure, uses the F' sam-
pling distribution and Welch’s modified degrees of freedom. The test statistic, denoted
by FBE is

-
FBF:(;V; = Jp C2A2 - ~ JT;2}12
v; s 79 0101+0202+ L oP0p

7=l nj nl n2 l’lp

A two-sided null hypothesis is rejected if FBF exceeds or equals the critical value
ViFy, v v » Where ViFy . 0 is obtained from the F distribution in Appendix Table E.4,
o. denotes the familyw1se error rate, v; = p — 1, and v, denotes Welch’s modified degrees
of freedom:

2
0151+0262+ ot p p
v n n, n,
27 44 44
€9 ‘3202
2
m(m=1) m (n2 1) ny, (n P~ 1)

In practice, the single-step Brown-Forsythe procedure is usually -Jpreceded by an
ANOVA F test of the omnibus null hypothesis. However, a preliminary ANOVA F test is
not necessary because the Brown-Forsythe procedure controls the familywise Type I error
rate. In fact, the test is very conservative. If a researcher is interested in only pairwise
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contrasts, one of the other procedures appropriate for heterogeneous variances, such as the
Games-Howell test, should be used.

5.7 Other Multiple Comparis

on Procedures

Newman-Keuls and Duncan Tests

Table 5.1-2, discussed earlier, contains multiple comparison recommendations for the
five common hypothesis-testing situations that occur in the behavioral sciences, health
sciences, and education. The 17 recommended procedures control the per-contrast,
familywise, or per-family Type I error rate for any complete or partial null hypothesis.
In addition, each of the recommended procedures has one or more other virtues such as
excellent power, ease of computation and interpretation, availability of confidence inter-
vals, and robustness. Missing from the list are two nonrecommended tests: the Newman-
Keuls test (Keuls, 1952; Newman, 1939) and Duncan’s (1955) test. Both of these

" step-down procedures are used to test all pairwise contrasts among p means. They are
competitors to the Tukey HSD, Fisher-Hayter, and REGW procedures described in
Section 5.5. Researchers like the Newman-Keuls and Duncan procedures because of
their excellent power. However, the Newman-Keuls procedure is not recommended
because it fails to control the familywise Type I error rate when the family contains more
than three means; Duncan’s procedure fails to control the familywise Type I error rate
when the family contains more than two means. Because of this serious shortcoming, I
will say no more about these tests.

Peritz’s Test

In 1970, Peritz introduced a step-down procedure that is a blend of the REGW and
Newman-Keuls procedures. Peritz’s procedure can be used with an F or a g statistic or a
combination of an omnibus F statistic followed by a g statistic. The procedure controls the
familywise Type I error and has been shown to have the highest per-pair power of all
multiple comparison procedures investigated (Einot & Gabriel, 1975) and is among the
highest in all-pairs power (Martin et al., 1989; Ramsey, 1981; Seaman et al., 1991).
Seaman et al. (1990) have described two modified Peritz procedures that achieve a slight
gain in power when p > 4. Unfortunately, the Peritz procedure and the two modifications
are complex and are best performed with the aid of a computer. The interested reader can
consult Begun and Gabriel (1981), Hochberg and Tamhane (1987), Kirk (1994), Ramsey
(1981), or Toothaker (1991).

Controlling the False Discovery Rate

Throughout this chapter, I have emphasized the importance of controlling the familywise
error rate for nonorthogonal contrasts. Testing a large number of contrasts can result in
very low power for individual tests. Benjamini and Hochberg (1995) proposed controlling
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the false discovery rate (FDR) instead of the familywise error rate. The FDR is the
expected proportion of contrasts falsely declared significant. Their idea was to make cer-
tain that the proportion of false discoveries relative to the total number of discoveries is
kept small, say, no more than 5%. The false discovery rate can be defined as follows:

Number of contrasts falsely declared significant

False di te (o = I
alse discovery rate (Gip) Number of contrasts declared significant

By controlling Oipg, a researcher is less likely to make Type I errors than procedures that
control the per-contrast error rate. And controlling Ogpr instead of Oy provides more
power to detect contrast that should be declared significant. When all null hypotheses are
true, Ozpr = Ow; When at least one null hypothesis is false, controlling ogpg at, say, .05
means that oy will exceed .05. It follows that controlling the false discovery rate is not
appropriate for all research situations. Control of Oppr has been recommended for
exploratory research and when the number of contrasts is extremely large (H. J. Keselman,
Cribbie, & Holland, 1999).

Research on the merits of controlling the false discovery rate and on procedures for
controlling the rate is in its infancy. The interested reader can consult Hemmelmann, Horn,
Siisse, Vollandt, and Weiss (2005); Horn and Dunnett (2004); Korn, Troendle, McShane,
and Simon (2004); Sakar (2002); and Somerville and Hemmelmann (2008).

5.8 Comparison of Multiple Comparison Procedures

Twenty-two multiple comparison procedures have been described in this chapter. The
procedures and their salient characteristics are summarized in Table 5.8-1. The relative
merits of various multiple comparison procedures have engendered much debate among
statisticians in recent years. Each of the procedures in Table 5.8-1 has been recommended
by one or more statisticians. The problem facing a researcher is to select the test statistic
that provides the desired kind of protection against Type I errors and at the same time

-provides maximum power. The characteristics of the most frequently recommended

procedures have been described in some detail along with pertinent references so that
researchers can make informed choices.

5.9 Review Exercises

1. Ter_ms to remember:

a. contrast (comparison) (5.1) b. pairwise comparison (5.1)
c. nonpairwise comparison (5.1) d. orthogonal contrast (5.1)
e. a priori (planned) test (5.1) f. data snooping 5.1

g. aposteriori (unplanned) test (5.1) h. exploratory data analysis (5.1)
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Table 5.8-1 » Comparison of Multiple Comparison Procedures

Pairwise Pairwise or
Contrasts ~ Nonpairwise Equal or Homogeneous  Heterogeneous
Test Only Contrasts Equal ns Unequal zs Variances Variances

A Priori Orthogonal Contrasts

Student’s 7 (5.2)* ' X X X
Student’s ¢ with Welch X X X
df (5.2)

p — 1 a Priori, Nonorthogonal Contrasts Involving a Control Group Mean

Dunnett DN (5.3) X X Xk X Xk

C a Priori Nonorthogonal Contrasts

Dunn (5.4) X X X
Dunn with Welch df X X X
54
Dunn-Sidak (5.4) X X X
Dunn-Sidék with X X X
Welch df (5.4)
Holm (5.4) X X X
Holm with Welch df X X X
54

All Pairwise Contrasts

Fisher’s LSD (5.1) X X X
Tukey’s HSD (5.5) X X X
Tukey-Kramer (5.5) X X X
Dunnett’s 73 (5.5) X X X
Dunnett’s C (5.5) X X X
- Games-Howell (5.5) X X X
Fisher-Hayter (5.5) X X X
REGW E FQ, and O X X (FQ, Q) X (F) X
(5.5)
Newman-Keuls (5.7) X X ‘ X
Duncan (5.7) X X X
Peritz FE FQ, and O X X FQ O X (F) X
5.7
All Contrasts Including Nonpairwise Contrasts
Scheffé (5.6) X ) X X
Brown-Forsythe (5.6) ' X X ’ X

*The numbers in parentheses denote the section where the test is described.

**¥With modification.
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[y

family of contrasts (5.1)

—.

confirmatory data analysis (5.1)

k. per-contrast error rate (5.1) 1. familywise error rate (5.1)
m. per-family error rate (5.1) n. experimentwise error rate (5.1)
o. overall power (5.1) p. P-subset power (5.1)

all-pairs power (5.1)

=

g. any-pair power (5.1)

s. single-step procedure (5.1) t. multiple-step procedure (5.1)
u. step-down procedure v. coherence (5.1)
w. step-up procedure (5.1) x. critical difference (5.4)
y. Dunn’s muitiple comparison z. Bonferroni procedure (5.4)
procedure (5.4)
aa. Fisher-Hayter test (5.5) ab. false discovery rate (5.7)

[5.1] In order for y; = c; Wy + ¢y Uy + "+ ¢, 1, to be a contrast, what conditions
must the coefficients satisfy?

[5.1] List the coefficients for the following contrasts.

*a. g versus U,

*b. W, versus mean of U, and [,

*c. Mean of 1, and L, versus mean of {3 and L,

*d. w, versus the weighted mean of p, and {5, where |, is weighted twice as
much as [,

e. W, versus mean of L), [i3, and [,
f. Mean of W, and W, versus mean of s, [, and s

g. The weighted mean of 1, and W, versus the weighted mean of 5 and [,
where |, and |, are weighted twice as much as |, and [,

[5.1] Which of the following meet the requirements for a contrast?

*a. 1y —Hy *b. 20—y — M3

1 1 1 1
e 3l —3 T T R 1
e. 1%”1‘”2‘%”3 f. ul—%uz—%ur%w

1 1 1 1 1
g st slh—gl3—sHs— 3 Hs
[5.1] Wl;ich contrasts in Exercise 4 satisfy |c;| + |c| + ** + |¢,| =27

[5.1] Indicate the number of pairwise comparisons that can be constructed for the
following designs.

*a. CR-3 design *p. CR:4 design

c. CR-5 design d. CR-6 design




204 Experimental Design

*7. [5.1] Which of the following sets of contrasts are orthogonal? Assume that the ns

are equal.
*a. gy =1 + (Du, + 0y, by = 1 + DUy + Opg
+ Oy
Wy =11y + O0py + (=13 Y, = Oy + Opy + 1ug
+ (=Dyy
R AT CEg TR SRR G T d. = 1py + (1), + Opt + Oy
wz=§u1+-§—uz+(—§)u3+(~§)u4 W2=1%H1 + %l«l2+(—%)li3
+ (—3)1"«4

e Y= %M + %Hz"‘(‘%)!-’a"‘(—%)m
L T S T L

8. [5.1] Construct three sets of orthogonal contrasts among five means. Each set
should contain four contrasts.

o~

*9, [5.2] The religious dogmatism of members of four church denominations in a large
midwestern city was investigated. A random sample of 30 members from each
denomination took a paper-and-pencil test of dogmatism. The sample means were
Y, =64, ¥, =73, Y; =61, and Y, =49; MSWG =120 and v, = 4(30 — 1) = 116.
The researcher advanced the following a priori null hypotheses: y; — y, =0, U3 —
My =0, and (b + Pp)/2 — (s + 1)2 = 0.

*3, Use a ¢ statistic to test these null hypotheses; let o = .01.

*b. Construct 100(1 —.01)% confidence intervals for these a priori contrasts. -

*c. [5.3] Compute the correlations among the contrasts.

*d. Assume that the sample variances are & = 62, 6% =73, 65 = 80, and
6% =265. Use Welch’s 7 statistic to test the null hypotheses. 5

10. [5.2] The effectiveness of three approaches to drug education in junior high
school was investigated. The approaches were providing objective scientific
information about the physiological and psychological effects of drug use,
a,; examining the psychology of drug use, a,; and providing a control condi-
tion in which the chemical nature of various drugs was examined, a;. Sixty-
three students who did not use drugs were randomly assigned to the groups
with the restriction that 21 were assigned to each group. At the conclusion
of the educational program, the students evaluated its effectiveness; a high
score signified effectiveness. The sample means were ¥; =25.8, ¥, =26.7,
and ¥; = 22.1; MSWG = 16.4 and v, = 3(21 — 1) = 60. The researcher
advanced the following a priori null hypotheses: pu; — i, = 0 and (U; + W,)/2
—H;=0. .

a. Use a ¢ statistic to test these null hypotheses; let o = .05.

b. Construct 100(1 — .05)% confidence intervals for these a priori contrasts.

_
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c. Compute the correlation between the contrasts.
d. Assume that the sample variances are 67 = 10.6, 65 =9.2, and 63 =29.4.
Use Welch’s # statistic to test the null hypotheses.
[5.1] For the experiment in Exercise 9, what are the following error rates?

*a. Per contrast *b. Familywise *c. Per family

[5.1] For the experiment in Exercise 10, what are the following error rates?

a. Per contrast b. Familywise c. Per family
[5.1] Suppose that 1000 experiments involving a CR-4 design have been per-
formed, and in each experiment, hypotheses for all possible pairwise compari-

sons have been tested. Assume that 50 Type I errors are committed, and these
occur in 35 of the 1000 experiments. Compute the following.

*a. Error rate per contrast *b. Error rate familywise

*c. Error rate per family

[5.1] Suppose that 1000 experiments involving a CR-5 design have been per-
formed, and in each experiment, hypotheses for all possible pairwise compari-

sons have been tested. Assume that 80 Type I errors are committed, and these
occur in 60 of the 1000 experiments. Compute the following.

a. Error rate per contrast b. Error rate familywise

c. Error rate per family

[5.1] Compute Oy for the following.

*a. Three a priori hypotheses involving orthogonal contrasts are each tested at
OCPC = 01 . N

*b, Four a priori hypotheses involving nonorthogonal contrasts are each tested at
a’PC = 05.

c. Four a priori hypotheses involving orthogonal contrasts are each tested at
(XPC = 05

d. Five a priori hypotheses involving nonorthogonal contrasts are each tested at
OtPC = 01 .
[5.1] For each of the following, indicate the recommended conceptual unit for
error rate.
a. A priori orthogonal contrasts b. A priori nonorthogonal contrasts

c. A poéteriori nonorthogonal
contrasts

[5.4] The effects of four doses of ethylene glycol on the reaction times of 20
chimpanzees were investigated. The animals were randomly assigned to one of
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18.

four groups with five in each group. Those assigned to group a,, the control
group, received a placebo; those assigned to group a, received 0.2 fluid ounces
(fl oz) of the drug; those assigned to group a; received 0.4 fl oz; and those
assigned to group a, received 0.6 fl oz. The sample means were Y, =0.28 sec-
ond, ¥, =0.29 second, ¥ = 0.31 second, and Y, =.39 second; MSWG = 0.002
and v, = 4(5 — 1) = 16. The researcher advanced a priori hypotheses about all
pairwise comparisons among means.

*a. Use the Dunn-Siddk procedure to test these hypotheses by comparing Vs,
with \y(zDS) . Construct a table like Table 5.5-1; let Oy, = .05.

*b. Construct 1 — 100(1 —.05)% confidence intervals for these a priori contrasts.

*c. Compute the correlations among the contrasts; assume that c¢;;=1 -1 0 0,
cy=1 0 -1 0, and so on. . .

*d. Compare the critical differences of the Dunn-Sidék statistic and Dunn statistic.

*e. Suppose that the researcher is interested only in the p —.1 = 3 contrasts that
involve the control group. For this case, compare the critical differences of
the Dunn and Dunn-Sidék procedures with Dunnett’s statistic.

[5.4] The effects of information regarding a rape victim’s past sexual behavior
on perceived culpability were investigated. One hundred twenty-four college
students were randomly assigned to one of four groups with 31 in each group.
The students read specially written newspaper stories describing testimony at a
trial. One newspaper account of the trial, condition a;, indicated that the victim
had an inactive sexual history. According to other accounts, the victim refused
to discuss her past sexual experience, a,; the judge prohibited testimony
regarding past sexual history, a;; and no mention of past sexual experience
came up, a,. The students rated the culpability of the victim on a 10-point scale;
the higher the rating, the more culpable the victim. The sample means were
Y,=42,7,=71,Y, =33,and ¥, =4.5; MSWG =14.08 and v, =4(31 - 1) =
120. The researcher advanced a priori hypotheses about all pairwise comparisons
among means.

a. Use the Dunn-Sidak procedure to test these hypotheses by comparing ;
with (zDS) . Construct a table like Table 5.5-1; let Otpyy = .05.

b. Construct 1 —100(1 —.05)% confidence intervals for these a priori contrasts.

c. Compute the correlations among the contrasts; assume that = 1-100,
c;;=1 0 -1 1; and so on.

d. Compare the critical difference of the Dunn-Sidék statistic with the Dunn
statistic.

- . : - 9
e. Suppose that the researcher is only interested in the p — 1 = 3 contrasts
involving treatment level a4. For this case, compare the critical differences
of the Dunn and Dunn-Sidék statistics with Dunnett’s statistic.
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[5.5] Exercise 17 described an experiment to evaluate the effects of four doses of
ethylene glycol on the reaction time of chimpanzees.

*a. Use Tukey’s procedure to test the omnibus null hypothesis [; = 1, = U = [iy.
If this hypothesis is rejected, proceed to test all pairwise comparisons.
Construct a table like Table 5.5-1; let oy = .05.

b, Construct 1 —100(1 —.05)% confidence intervals for all pairwise comparisons.
*c. Use the Holm test to evaluate all pairwise comparisons.

*d, Use the Fisher-Hayter test to evaluate all pairwise comparisons by compar-
ing \, with y(gFH). ‘

*e. Use the REGW Q test to evaluate all pairwise comparisons.

*f Rank the procedures in terms of apparent power.

[5.5] Exercise 18 described an experiment to evaluate the effects of information
regarding a rape victim’s past sexual behavior on perceived culpability.

a. Use Tukey’s procedure to test the omnibus null hypothesis [; = [, = [ = .
If this hypothesis is rejected, proceed to test all pairwise comparisons. Con-
struct a table like Table 5.5-1; let Oty = .05.

b. Construct 1 —100(1 —.05)% confidence intervals for all pairwise comparisons.
c. Use the Holm test to evaluate all pairwise comparisons.
d. Use the Fisher-Hayter test to evaluate all pairwise comparisons by compar-
ing \;, with (gFH).
e. Use the REGW Q test to evaluate all pairwise comparisons.
f. Rank the procedures in terms of api)arent power.
[5.6] Exercise 10 described an experiment to evaluate the effectiveness of three

approaches to drug education in junior high school. Assume that the omnibus null
hypothesis was rejected at the-.05 level of significance.

*a. Use Scheffé’s procedure to test the following null hypotheses:

Hyly—1=0  Hypp—p3=0  Hy (W +H)2 -3 =0
Let aFW = .05.

*b. Suppose that the sample variances for this problem are 67 =4.1, 65 =133,
and 65 =31.8. Use the Brown-Forsythe procedure to test the null
hypotheses. o

[5.6] The effects of simulator training involving synergistic 6-degrees-of-
freedom platform motion on the acquisition of basic approach and landing skills
of 63 undergraduate pilot trainees were investigated. The trainees were randomly
divided into three groups. Those in group a; received 10 sorties with platform
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motion in the Advanced Simulator for Pilot Training. Those in group a, also
received 10 sorties but without motion. Trainees in group as, the control group,
received the standard syllabus of preflight and flightline instructions. The depen-
dent variable was instructor-pilot ratings of trainee performance in a T-37 air-
craft. The sample means were )_fl =16.2, 72 =15.1, and 1?3 =11.4; MSWG =
39.94 and v, = 3(21 — 1) = 60. Assume that the omnibus null hypothesis was
rejected at the .05 level.

a. Use Scheffé’s procedure to test the following null hypotheses:

Hy: py =0 Hy: (W +Mp)2 -3 =0
Let aFW: .05.

b. Suppose that the sample variances for this problem are 612 =28.12, 6% =
31.63, and 63 = 60.07. Use the Brown-Forsythe procedure to test the null
hypotheses.

N




