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18.7 Data monitoring 613

assumptions that may not be easily testable. In particular, it is assumed that the
regressions of response on compliance for the two groups have the same inter-
cept at zero compliance, so that a non-compliant patient would have the same
expected response whatever the assignment (as in the model of Example 18.1).
Dunn (1999) discusses the effect of error in the compliance measurement, and
concurs with a view expressed earlier by Pocock and Abdalla (1998) that com-
plex models for compliance should not replace ITT analyses, but should be
regarded as additional explanatory descriptions.

The journal issue edited by Goetghebeur and van Houwelingen (1998) con-
tains several useful papers on this evolving body of methodology.

We note finally that non-compliance may affect any calculations of sample-
size requirements made before the start of a trial. In an ITT analysis, the effect of
non-compliance is likely to be to bias the difference in mean response between
two treatments towards zero. This will be especially so in a trial to compare a
new treatment against a placebo, if non-compliance results in patients assigned
to the new treatment switching to the placebo. Suppose the expected difference is
reduced by a fraction ¢. Then the number of patients required to provide the
intended power against this reduced treatment effect must be increased by a
multiple 1/(1 — ¢©)”. This can be taken into account in the planning of the trial if
¢ can be estimated reasonably accurately. Unfortunately, this will often not be
possible. As we have seen, non-compliance can take many forms and have many
consequences, the nature and extent of which will usually be unknown at the
outset. It may be possible to estimate the proportion, 0, of non-compliant
patients from previous experience of similar trials, but the effects of these
protocol departures on the outcomes for the different groups may be less
obvious. The best plan may be to make a simple, plausible assumption and err,
if at all, in the direction of overstating the required trial size. One such assump-
tion, in a two-treatment trial, might be that the outcome for a non-compliant
patient is, on average, the same as that in the non-assigned group. The conse-
quence of that assumption is that ¢ = 0, and hence the intended trial size should
be increased by a factor 1/(1 — 0)” (Donner, 1984).

18.7 Data monitoring

In any large trial, the investigators should set up a system of administrative
monitoring, to check that high standards are maintained in the conduct of the
trial. Such a system will check whether the intended recruitment rate is being
met, detect violations in entry criteria and monitor the accuracy of the informa-
tion being recorded. Administrative monitoring may reveal unsatisfactory fea-
tures of the protocol, leading to its revision. If the rate of recruitment is below
expectation, the investigators may seek the cooperation of other medical centres
or perhaps liberalize the entry criteria.
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Administrative monitoring will normally make no use of the outcome data
for patients in the trial. In contrast, data monitoring 18 concerned with the
evidence emerging from the accumulating data on the safety and efficacy of
the treatments under trial.

Safety will be an important issue in almost every trial. Most medical treat-
ments and procedures produce minor side-effects, which will often have been
anticipated from the results of earlier studies and may not cause serious concern.
Serious adverse events (SAEs), especially when potentially life-threatening, must
be carefully monitored (and perhaps' reported to a central agency). A high
incidence of unexpected SAEs, not clearly balanced by advantages in patient
survival, may lead to early termination of the trial, or at least the modification or
abandonment of the suspect treatment.

Differences in efficacy may arise during the course of the trial and give rise to
ethical concerns. The investigators will probably have started the trial from a
position of ethical equipoise, regarding all the rival treatments as potentially
acceptable. If the emerging evidence suggests that one treatment is inferior to
another, the investigators may feel impelled to stop the trial or at least drop the
offending treatment.

The mechanisms for conducting data monitoring are discussed in the follow-
ing subsections.

The Data Monitoring Committee

The responsibility for early termination or changes in protocol rests with the
investigators (who, in a multicentre or other large trial, will normally form a
Steering Committee). However, in a double-masked trial they will be unaware of
the treatment assignments and unable to monitor the results directly. It is usual
for the task to be delegated to an independent group, known as the Data [and
Safety] Monitoring Commiitee (D[SIMC) or some similar title. The DMC will
typically comprise one or more statisticians, some medical specialists in the areas
under investigation and perhaps some Jay members. It will not normally include
investigators or commercial sponsors, although there is some variation of opin-
ion on this point (Harrington ef al., 1994; Meinert, 1998).

The DMC should meet at approximately regular intervals, and receive
unmasked data summaries presented by the trial statisticians. It will normally
report to the Steering Committee, avoiding explicit descriptions of the data but
presenting a firm recommendation for or against early termination or protocol
modification.

In assessing the evidence, the DMC will need to bear in mind the difficulties
arising from the repeated analysis of accumulating data. These are discussed in
general terms in the next subsection, which is followed by a more explicit
description of methods of analysis.
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Sequential analysis

A sequential investigation is one in which observations are obtained serially and
the conduct, design or decision on termination depend on the data so far
observed. We are particularly concerned here with the possibility of early termin-
ation. Sequential analysis provides methods for analysing data in which the
decision whether to terminate at any point depends on the data obtained. It
was originally developed in pioneering work by A. Wald (1902-50).

Implicit in any sequential analysis is the concept of a stopping rule, defining
the way in which the termination decision depends on the results obtained. A
simple example arises in sequential estimation, where the purpose of an investiga-
tion might be to estimate a parameter to a specified level of precision. Suppose
that, in a random sample of size n from a distribution with mean p. and variance
o2, the estimated mean is X, and the estimated standard deviation is s, (the
subscript indicating that these statistics will change randomly as n increases). The
estimated standard error of X, is 5,/4/n and, although s, will fluctuate randomly,
this standard error will tend to decrease as n increases.

A possible stopping rule for the sequential estimation of . might therefore be
to continue sampling until the standard error falls to some preassigned low
value, and then to stop.

Standard methods of analysis, such as those described in the early chapters of
this book, have assumed a fixed sample size, n. The question then arises whether
these methods are valid for sequential studies in which 7 is not preassigned but
depends on the accumulating data. The question can be answered at two differ-
ent levels. From a frequentist point of view, the properties of a statistical
procedure are affected by sequential sampling, in that the long-run properties
have to be calculated for hypothetical repetitions of the data with the same
sequential stopping rule rather than with the same sample size. However,
for sequential estimation, as in the simple case described above, the effect is
rather small. For instance, the probability that a confidence interval based on the
estimated standard error covers the parameter value is not greatly affected,
particularly in large samples. However, we shall see in the next subsection that
other procedures, such as significance tests, may be more seriously affected.

From another standpoint we may wish to make inferences from the like-
lihood function, or, with a Bayesian interpretation, from the posterior distribu-
tion with some appropriate prior distribution. The stopping rule is now
irrelevant, since likelihoods for different parameter values assume the same
ratios whatever the stopping rule. This important result is called the strong
likelihood principle.

~ In the data monitoring of a clinical trial, the case for early termination is
likely to arise because there is strong evidence for an effect in favour of, or
against, one treatment, and the standard way of examining such evidence in a
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non-sequential experiment is by means of a significance test. Suppose that a
significance test to compare the mean effects of two treatments is carried out
repeatedly on the accumulating data, either at the occasional meetings of a DMC
or more frequently by the trial statisticians. It is easy to see that the Type I error
probability exceeds the nominal level of the significance test, because the invest-
igator has a number of opportunities to find a ‘significant’ effect purely by
chance, if the null hypothesis is true.

This effect is similar to that of multiple comparisons (§8.4), although the two
situations are conceptually somewhat different. A hypothetical example will
show that the effect of repeated significance tests is not negligible.

Suppose that, in a double-masked cross-over trial (§18.9), each patient
receives two analgesic drugs, A and B, in adjacent weeks, in random order. At
the end of the 2-week period each patient gives a preference for the drug
received in the first week or that received in the second week, on the basis of
alleviation of pain. These are then decoded to form a series of preferences for A
or B.

It seems reasonable to test the cumulative results at any stage to see whether
there is a significant preponderance of preferences in favour of A or B. The
appropriate conventional test, at the nth stage, would be that based on the
binomial distribution with sample size # and with 7 = % (see §4.4). Suppose the
tests are carried out at the two-sided 5% significance level. The investigator,
proceeding sequentially, might be inclined to stop if at some stage this signifi-
cance level were reached, and to publish the results claiming a significant differ-
ence at the 5% level. Indeed, this is a correct assessment of the evidence ar this
particular stage. The likelihood principle enunciated in the last subsection shows
that the relative likelihoods of different parameter values (in this case different
values of r, the probability of a preference for A) are unaffected by the stopping
rule. However, some selection of evidence has taken place. The investigator had a
large number of opportunities to stop at the 5% level. Even if the null hypothesis
is true, there is a substantial probability that a ‘significant’ result will be found in
due course, and this probability will clearly increase the longer the trial con-
tinues.

In this example, the discrete nature of the binomial distribution means that it
is impossible to get a result significant at the two-sided 5% level until n =6
preferences have been recorded, and then the Type I error probability is (again
because of the discreteness) less than 5%, namely 0-031. With n = 50, the Type I
error probability has risen to 0-171, and with » = 100 it is 0-227. In fact, it rises
continually as # increases, eventually approaching 1.

For repeated ¢ tests on a continuous response variable, assumed to be
normally distributed with unknown variance, the effect is even more striking,
since the error probabilities are not reduced by discreteness. For n = 100, the
Type I error probability is 0-39 (McPherson, 1971).
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To control the Type I error probability at a low value, such as 5%, a much
more stringent significance level (that is, a lower probability) is required for
assessing the results at any one stage. Suppose that the stopping rule is to stop
the trial if the cumulative results at any stage show a significant difference at the
nominal two-sided 2o level, or to stop after N stages if the trial has not stopped
earlier. To achieve a Type I error probability, 2a, of 5%, what value should be
chosen for 2/, the significance level at any one stage? The answer clearly
depends on N: the larger the value of N, the smaller 2o must be. Some results
for binomial responses, and for normally distributed responses with known
variance, are shown in Table 18.2.

The choice of N, the maximum sample size in a sequential test, will depend on
much the same considerations as those outlined in §4.6. In particular, as in
criterion 3 of that section, one may wish to select a sequential plan which not
only controls the Type I error probability, but has a specified power, say, [ — 3,
of providing a significant result when a certain alternative to the null hypothesis
is true. In the binomial test described earlier, a particular alternative hypo-
thesis might specify that the probability of a preference for drug A, which we
denote by , is some value 7| different from é— If the sequential plan is symme-
trical, it will automatically provide the same power for w = w_i(= 1 — 1) as
for ar;.

Table 18.3 shows the maximum sample sizes, and the significance levels for
individual tests, for binomial sequential plans with Type I error probability
200 =0-05 and a power 1 — B = 0-95 against various alternative values of .
These are examples of repeaied significance test (RST) plans. More extensive
tables are given in Armitage (1975, Tables 3.9--3.12).

Table 18.2 Repeated significance tests on cumula-
tive binomial and normal observations; nominal
significance level to be used for individual tests for
Type I error probability 2a = 0-05.

Nominal significance level (two-
sided), 2o/, for individual tests

Number of
stages, IV Binomial Normal
— 0-050
5 — 0-016
10 0-031 0-010
15 0-023 0-008
20 0-022 0-007
50 0-013 0-005
100 0-008 0-004

150 0-007 0-003
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Table 18.3 Maximum sample size, N, and nominal significance levels for indi-
vidual tests, 2/, for binomial RST plans with Type I error probability
20 = 0-05 and power 1 — B = 0-95 against various values of w differing from
the null value of 0-5.

Ty 20/ N
0-95 0-0313 10
0-90 0-0225 16
0-85 0-0193 25
0-80 0-0147 38
0-75 : 00118 61
0-70 0-0081 100

We have assumed so far that sequential monitoring of the data is carried out
continuously, after every new observation. This is very unlikely to be the case in
any large-scale trial, where data summaries are normally prepared at intervals, in
preparation for meetings of the DMC. However, the effect of periodic monitor-
ing may be much the same as for continuous monitoring, in that, when a periodic
review suggests that a termination point may be encountered in the near future, a
more intensive review is likely to be conducted for new data arriving in the
mmmediate future. In that case, the trial is likely to be terminated at the same time
as if continuous monitoring had been in place.

The book by Armitage (1975) presents plans for continuous monitoring, but
is largely superseded by the more comprehensive book by Whitehead (1997). The
latter book also concentrates mainly on continuous monitoring, but with a wide
range of data types and alternative stopping rules.

The extensive use of DMCs, with interim data analyses at a relatively small
number of times, has led to the widespread use of stopping rules based on group
sequential schemes, whereby only a small number of repeated analyses are
considered. We discuss these in the next subsection.

Group sequential schemes

A group sequential plan with specified Type I error probability could be
obtained as a particular case of repeated significance tests with a small value of
N, with the understanding that each of the N ‘observations’ is now a statistic
derived from a group of individual observations. We need, though, to consider a
more general framework. In the schemes for repeated significance tests illus-
trated in Tables 18.2 and 18.3, the proviso that the nominal significance level is
the same for all the individual tests is unnecessarily restrictive. Some wider
possibilities are illustrated in Example 18.2.




18.7 Data monitoring 619

Examyple 18.2

In Example 4.14 (p. 140), we determined the sample size required to achieve specified
power in a comparison of means of two groups of measurements from a lung-function
test. Observations were assumed to be normally distributed with known variance, and,
with a two-sided significance level of 0-05, a power of 0-8 was required for an alternative
hypothesis that the standardized difference in means was 0-3. (The specified difference was
§; = 0-251, and the standard deviation was o = 0-51, but for present purposes it is the
standardized difference, 8, /o, that matters.) The solution was that n = 63 individuals
were needed in each group, a total of 126. We now consider various alternative group
sequential plans that provide the same power.

Table 18.4 gives details of three group sequential plans, achieving the same power
requirements. They all require five equally spaced inspections of the data. The table shows
the standardized normal deviate (z value), calculated from a comparison of the means of
the data so far, which would indicate termination of the trial at each stage. These are
plotted in Fig. 18.1, and form sequential boundaries for the z value. Alternative methods
of plotting boundaries use either (i) the bounds for the parameter estimate (in this case the
difference in means); or (i) those for a cumulative sum (in this case the difference between
the two totals). These are easily obtained from the bounds for z, after n’ observations in
each group, by multiplying by o/(2/n) and a+/(2#'), respectively.

The characteristics of the three schemes illustrated in Table 18.4 and Fig. 18.1 are
described below.

The Pocock boundaries (Pocock, 1977) are based on repeated significance
tests at a fixed level, as described earlier. (The z value of 2-41 shown in Table 18.4
corresponds to the two-sided nominal significance level of 0-016 shown in Table
18.2.) The bounds for z determine the Type I error probability, while the power is
controlled by the terminal sample size shown in the lower part of Table 18.4.
Note that the terminal sample size, 155, exceeds the fixed sample size of 126, but

Table 18.4 Three group sequential schemes for the trial described in Example 18.2. Bounds for the
standardized normal deviate (z value) at interim and final inspections. Entries in this table are derived
from FaSt for Windows (1999) and Geller and Pocock (1987).

Pocock O’Brien-Fleming Haybittle-Peto
Interim inspection
1 2:41 4.56 329
2 2:41 3.22 3.29
3 2-41 2-63 3.29
4 2-41 2:28 3-29
5 2-41 2-04 197
Sample size
Terminal 155 130 126
Mean on Hy 151 129 126

Mean on H; 101 103 113
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Fig. 18.1 Boundaries for three group sequential schemes with five interim inspections, as detailed in
Table 18.4. (——) Pocock; (~ - —) O’Brien—Fleming; (- - -) Haybittle-Peto.

if the alternative hypothesis is true (in this case a standardized difference of 0-5)
the mean sample size is reduced substantially, to 101. Note also that the terminal
bound for z substantially exceeds the fixed sample-size value of 1-96, so, if the
trial continued to the fifth stage with a final value of z between 1-96 and 2-41, the
interpretation would be difficult to explain. As Piantadosi (1997) remarks, ‘this is
an uncomfortable position for investigators’.

The other two schemes illustrated in Table 18.4 largely avoid this difficulty.
The O’Brien—Fleming (OBF) scheme (O’Brien & Fleming, 1979) uses constant
bounds for the cumulative sum that are very close to those appropriate for a
fixed sample-size test at the final inspection. A consequence is that the bounds
for z at the kth inspection (k= 1,2, ..., K) are equal to those for the final
inspection (k = K) multiplied by /(K/k); K = 5 in this example. They are thus
initially very wide, as shown in Table 18.4 and Fig. 18.1, and converge to final
values close to those appropriate for a non-sequential test. When Hy is true, trial
results will usually lead to termination at the Kth inspection, and, as indicated by
Table 18.4, the mean sample size is close to the maximum, Jower for the OBF
scheme than for the Pocock scheme. When H; is true, the two schemes have very
similar properties. In some variants of OBF, the excessively wide bounds for
k =1 are pulled in to the standardized normal deviate corresponding to the
0-001 level, z = 3-29.
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Haybittle (1971) and Peto et al. (1976) suggested that a constant, but high,
value of z should be used for all the interim analyses, which (as in OBF) permits a
value close to the fixed sample-size value to be used at the final stage. For a Type
I error probability of 0-05, different variants of the Haybittle-Peto scheme use
3.29 (as in Table 18.4) or 3-00 for the interim bounds.

In choosing between these three schemes, an informal Bayesian approach
may be helpful. The Pocock scheme will lead to carlier termination than the
others if the treatment effect is very large. If the initial view is that such large
differences are plausible, it may be wise to adopt this scheme. Otherwise, the
O’Brien-Fleming or Haybittle-Peto schemes will be preferable, avoiding, as they
do, undue reliance on results from a small number of early observations, and
removing the ambiguity about the bound for the final inspection. Further gen-
eral comments about the use of group sequential schemes are contained in the
final subsection.

The schemes described so far require the number of inspections to be decided
in advance, and their timing to be at equally spaced intervals. These conditions
are rarely achievable. Flexibility is provided by the alpha-spending function
approach (Lan & DeMets, 1983; Kim & DeMets, 1987; DeMets & Lan, 1994),
whereby the predetermined Type I error probability can be ‘spent’ in a flexible
way, the schedule being decided for the convenience of the DMC, although
independently of the trial results.

We have assumed so far that the observations are normally distributed with
known variance. This is, of course, unlikely to be true, but, as in many of the
methods described in this book, the normal distribution methodology often
provides a useful approximation for a wide range of other situations. However,
special methods have been developed for many other data types, including binary
observations and survival times. A comprehensive account of group sequential
methods is given by Jennison and Turnbull (2000), and other useful surveys are
those by Kittleson and Emerson (1999) and Whitehead (1999). Geller and Pocock
(1987) tabulate boundaries for various schemes. U seful software is provided by
EaSt for Windows (1999) and the PEST system (MPS Research Unit, 2000).

Whitehead (1997) develops a very general system of sequential designs for
continuous monitoring, implemented in PEST. For the standard normal model
with known variance, they possess boundaries which are linear for the cumula-
tive sum plot. Group sequential designs are handled by providing so-called
Christmas tree corrections to the continuous boundaries.

Stochastic curtailment

The schemes described above permit early stopping when convincing evidence
arises for a difference in efficacy between treatments. The main motivation there
is the ethical need to avoid.the continued use of an inferior treatment.
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A somewhat different situation may arise if the interim results for, say, two
treatments are very similar, and when it can be predicted that the final difference
would almost certainly be non-significant. Methods for curtailing a trial under
these circumstances have been proposed by many authors (Schneiderman &
Armitage, 1962; Lan et al., 1982 (using the term stochastic curtailment); Ware
et al., 1985 (using the term futility); Spiegelhalter & Freedman, 1988 (using
Bayesian methods)). Boundaries permitting stochastic curtailment can be incorp-
orated into schemes permitting early stopping for efficacy effects and are easily
implemented with EaSt or PEST.

Although this approach may be useful in enabling research efforts to be
switched to more promising directions, there is a danger in placing too much
importance on the predicted results of a final significance test. Data showing
non-significant treatment effects may nevertheless be valuable for estimation,
especially in contributing to meta-analyses (see §18.10). It may be unwise to
terminate such studies prematurely, particularly when there is no treatment
difference to provide an ethical reason for stopping.

Other considerations

The methods described in this section have been developed mainly from a non-
Bayesian point of view. As indicated earlier, in the Bayesian approach the
stopping rule is irrelevant to the inferences to be made at any stage. A trial
could reasonably be stopped whenever the posterior distribution suggested
strong evidence of a clear advantage for one treatment. This approach to the
design, analysis and monitoring of clinical trials has been strongly advocated, for
instance, by Berry (1987) and Spiegelhalter er al. (1994). Grossman et al. (1994)
have discussed the design of group sequential trials which preserve Type I error
probabilities and yet involve boundaries determined by a Bayesian formulation,
the prior distribution representing initial scepticism about the possible treatment
effect.

We have assumed, in describing repeated significance tests, that the null
hypothesis specifies a lack of difference in efficacy between treatments. It may
be useful to base a stopping rule on tests of a specific non-zero difference (Meier,
1975; Freedman et al., 1984; see also §4.6, p. 140, and the discussion of equiva-
lence trials in §18.9). All the sequential methods outlined here can be adapted by
basing the boundaries on tests of the required non-zero values.

The rather bewildering variety of methods available for data monitoring can
perhaps be put into perspective by the widely held view that all such rules should
be treated flexibly, as guidelines rather than rigid prescriptions. Many authors
would argue that a DMC should define a stopping rule at the outset, even though
its implementation is flexible. Others (Armitage, 1999) have favoured a more
open approach, without a formal definition of the stopping rule, but with a
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realization of the effect of repeated inspections of data on the Type I error. An
intermediate attitude is perhaps to use the Haybittle-Peto approach, whereby
differences of less than about three times their standard error are generally
ignored during the interim analyses.

The reason for this sort of flexibility is that a decision to stop will usually
depend on more than the analysis of a single response variable. There may be
several primary endpoints, for both efficacy and safety, and, in a follow-up

“study, these may be measured at various times during follow-up. Effects seen at
an early stage of follow-up might not persist over a longer period. Results from
other relevant trials may suggest the need to terminate the current trial or amend
the protocol. Changes in clinical practice or in evidence from other studies may
change the views of the investigators about the importance or otherwise of
significant but small effects. No single stopping rule would take account of all
these features. Finally, it should be remembered that the decision whether or not
to stop rests with the investigators: the DMC will make recommendations, but
these need not necessarily be followed by the Steering Committee.

18.8 Interpretation of trial results

As noted in §18.3, the results of a clinical trial do not necessarily have an
immediate impact on clinical practice. Other practitioners may have stronger
prior convictions than the trial investigators, the refutation of which requires
stronger evidence than that produced by the trial. Or there may be concern about
Jong-term adverse effects or changes in efficacy. In this section we note a number
of issues that affect the acceptability or interpretation of trial results.

Number needed to treat (NNT)

A new treatment may be more expensive or less acceptable to patients than a
standard treatment. An important general question is whether the benefit appar-
ently conferred by a new treatment justifies its use on the large number of
patients falling into the relevant category. To some extent this should have
been taken into account by the trial investigators, in designing the study, and
discussed in the published report of the trial. In trials with a binary response
variable, such as the incidence of stroke within a 3-year period, a useful index is
available to indicate the balance between future usage and benefit.

Suppose that the probabilities of a specified adverse response in patients
receiving a new or a control treatment are, respectively, my and m¢, estimated
from the trial by p7 and pc. Then, the number of patients needed to be treated to
prevent one single adverse outcome (the NNT) is 1/(mc —arr), and this is
estimated by 1/(pc — pr). Note that this is the reciprocal of the absolute risk
reduction, and is not expressible purely in terms of the relative risk reduction.



