

	<i>i</i> 1	x _i	1		toronal constant as your a	and our restored and in the		
	1			x _i	i	xi	i	xi
		3265	6	3323	11	2581	16	2759
	2	3260	7	3649	12	2841	17	3248
	3	3245	8	3200	13	3609	18	3314
	4	3484	9	3031	14	2838	19	3101
	5	4146	10	2069	15	3541	20	2834
$\overline{x} = \frac{3}{2}$ If $x_1 = \frac{5}{2}$	$\frac{3265 \text{ g}}{= 500 \text{ g}}$	$\frac{g + 3260 \text{ g}}{20}$ g rather th $\frac{+ 3260 \text{ g} + 3260 \text{ g}}{20}$ rely large c	++283 nan 3265 +2834	$\frac{34 \text{ g}}{\text{g}} = 316$ $\frac{34 \text{ g}}{\text{g}} = 316$ $\frac{4 \text{ g}}{\text{g}} = 3028$ $\frac{34 \text{ g}}{\text{g}} = 3028$	6,9 g ,7 g	ution		

$$\frac{\text{Example. Combining sample means:}}{\overline{x}_{1} = 18, 4 \quad n_{1} = 22 \\ \overline{x}_{2} = 17, 9 \quad n_{2} = 11 \\ \overline{x}_{3} = 9, 5 \quad n_{3} = 16 \\ \overline{x}_{4} = 15, 1 \quad n_{4} = 5 \qquad (i.e. \ k = 4) \\ \overline{x}_{4} = \frac{k}{5, 1} \quad \overline{x}_{n_{4}} = \frac{n_{1}\overline{x}_{n_{4}} + n_{2}\overline{x}_{n_{2}} + \dots + n_{k}\overline{x}_{n_{k}}}{n_{1} + n_{2} + \dots + n_{k}} \\ \overline{x}_{j=1} = \frac{22 \cdot 18, 4 + 11 \cdot 17, 9 + 16 \cdot 9, 5 + 5 \cdot 15, 1}{22 + 11 + 16 + 5} \\ = \frac{404, 8 + 196, 9 + 152 + 75, 5}{54} = \frac{829, 2}{54} = 15, 36$$

TABLE 2.1	Sample of birthweights (g) of live-born infants born at a private hospital in San Diego, California, during a 1-week period								
	i	x _i	1	xi	i	x _i	i	xi	
	1	3265	6	3323	11	2581	16	2759	
	2	3260	7	3649	12	2841	17	3248	
	3	3245	8	3200	13	3609	18	3314	
	4	3484	10	3031	14	2838	19	3101	
			0 7 1	1)					
Eksample	e (Ro	osner expl	. 2.5, p.1	1)					
Eksample (from Ro	e (Ro sner	osner expl table 2.1,	. 2.5, p.1 p. 10)	<u> </u>					
$\frac{\text{Eksample}}{(\text{from Ro})}$ $n = 20, \text{ we have:}$	e (Ro sner ve us	osner expl table 2.1, e definitio	p. 10) p. (2):	<u> </u>					
Eksample (from Ro $n = 20$, w $x_{(n)}$ +	e (Rc) sner ve us $x_{(n+1)}$	$\frac{2}{2} \sum_{x \in A} \frac{x}{2}$	$\frac{2.5, p.1}{p. 10}$ on (2): $+ x_{(20+2)}$	<u> </u>					
Eksample (from Ro $n = 20$, w $x_{\left(\frac{n}{2}\right)}$ +	$\frac{e(Rc)}{sner}$	$\frac{2}{2} = \frac{x(20)}{x(20)}$	$\frac{2.5, p.1}{p. 10}$ on (2): + $x_{(\frac{20+2}{2})}$	$x_{(10)} + x_{(10)}$	(III) 3	245 σ + 3	248 g		

Quantiles and percentiles

Example (Rosner, expl. 2.16)

Find $V_{0,1}$ and $V_{0,9}$ (10th and 90th percentile) of the birth weight data in table 2.1.

p = 0,1 and np = 2 (integer) and we employ (2):

$$V_{0,1} = \frac{x_{(2)} + x_{(3)}}{2} = \frac{2581 + 2759}{2} = 2670g$$

p = 0.9 and np = 18 (also an integer) and we use (2):

$$V_{0,9} = \frac{x_{(18)} + x_{(19)}}{2} = \frac{3609 + 3649}{2} = 3629g$$

The central 80 % of children thus weigh between 2670 g and 3629 g, i.e. a spread of about 1000 g.

NTNU Norwegian University of Science and Technolog

42

ST. OLAVS HOSPITAL

