

Continuous Probability Distributions

Pål Romundstad

Today ...

- Probability distribution for continuous variables
 The expected value (mean) and variance
- The Normal distribution
 Standardized N- distribution
- Practical use
- Normal approximation to binomial distributions
- + Other continuous probability distributions (T, $\chi^2,\,F)$

- Eg: Height in cm, weight in kg, velocity in km/h
- Synonym: measurement variable, scale variable
- Properties:
- Probability of a particular value is 0
 Probability density is estimated over intervals of single values

Given $X \sim N(0,1)$, Find $Pr(X \le 1)$ Table 3 column A : $Pr(X \le 1) = \Phi(1) = 0.8413$

Ex. 5.12

Given $X \sim N(0,1)$, Find Pr ($X \le -1.96$) Table 3 column B: Pr ($X \le -1.96$) = Pr (X > 1.96) = 0.025

Ex. 5.13

Given $X \sim N(0,1)$, Find Pr (-1 $\leq X \leq 1.5$) Pr (-1 $\leq X \leq 1.5$) = Pr (X ≤ 1.5) – Pr (X ≤ -1) = Pr (X ≤ 1.5) – Pr (X > 1) = 0.9332 – 0.1587 = 0.7745

Kan man oppnå normalfordeling?

- Transformation: express something using a different scale
- Some usual examples: Length: 1 inch = 2,54 cm Acidity: pH = - log [H⁺] dB = log (loud pressure) Absolute temperature: K = 273,15 + °C
 - Athletics: 1.place = shortest time, 2. place = no. 2 shortest timeand so on
- Nothing suspicious about this!!

Other approaches in analysis

- Non-parametric procedures: - Rank tests
- Bootstrapping
 - Many (> 1000) repeated samples with replacement
- Robust standard error
 - Estimate the standard error based on the variability in the data using residualer

 - Sandwich variannce estimate
 - Large sample procedure

Other continuous Probability Distributions

- Normal distribution (Gauss distribution)
- Same characteristics are valid for:
 - Standard normalfordeling (the Z distribution)
 - T distribution
 - χ^2 distribution
 - F distribution

Other continuous Probability Distributions

T - distribution

- Resembles the Zi distribution, but with ticker tails. Defined by degrees of freedom (*df*). Is used, rather than the Z-distr. When the variance is unknown and must be estimated from the data (relatively small samples) •
- χ² distribution
 Skewed to the right. Shape is determined by degrees of freedom (*df*)
 Many different procedures. Variance, modelling, tables.

- F distribution (ratio)
 Skewed to the right. Shape is determined by degrees of freedom (*df*) in the nominator and denominator.
 ANOVA, regression, modelling.

