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Random experiment 
 
The concept of probability is relevant to experiments that have somewhat uncertain 
outcomes. However, the term “experiment” is not restricted to laboratory or designed 
experiments, but includes any activity that results in the collection of data pertaining to 
phenomena that exhibits variation. 
 
Examples of random experiments: 
 

a) Tossing a coin. Record outcome as ”head” or ”tail. 
 

b) Rolling a die. Record outcome as number of eyes facing up. 
 

c) Tossing a coin until “head” appears. Record outcome as number of tosses.  
 

d)  Disease. Record outcome as ”recovered”, ”chronic ill” or “dead”. 
 

e)  Measurement of haemoglobin concentration in blood. 
 
 

In each of the examples, the experiment is described in terms of what aspect of the result is 
to be recorded.  
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The outcome of an individual random experiment cannot be predicted with certainty, but 
the set of all possible outcomes is known in advance. 
 

The set of all possible distinct outcomes of an experiment is called the 
sample space of outcomes.  
Each distinct outcome is called a simple event, an elementary outcome, or an 
element of the sample space. 

 
 
Statistical regularity 
A random experiment can, in principle, be repeated numerous times under the same 
conditions. The outcomes of individual experiments must be independent, and must in no 
way be affected by any previous outcome. 
 
Suppose a random experiment, repeatedly tossing of a coin, say.  A is the event ”head”. 
Tossing n times results in “head” nA times.  Empirically, the relative frequency of A, nA/n, 
will settle close to a certain number p if n increases, and in a repeated series nA/n will again 
settle close to p. The relative frequency of A is an estimate of the probability of ”head in a 

single toss, and  it is obvious that An0 1
n

≤ ≤ . 
 

 4 

 
Sample space, elementary outcome, and event  
 
The collection (set) of all elementary outcomes in a random experiment is called the sample 
space (no.: utfallsrommet) , usually written S. Every simple event is an element of the 
sample space. In the examples above: 
 

a) S = {Head, Tail} 
 

b) S = {1, 2, 3, 4, 5, 6} 
 

c) S = {1, 2, 3, 4, 5, 6, 7, 8, …….} 
 

d) S = {Recovered, Chronically ill, Dead} 
 

e) S = {7 – 20 g/dl} (approximately) 
 
Note that the sample space can consist of measurable elements (numbers), or of non-
measurable, qualitatively different elements.  
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Sample space – discrete or continuous 
 
A sample space consisting of a finite or a countably infinite number of elements is called a 
discrete sample space.  
When the sample space includes all the numbers in an interval of the real line, it is called a 
continuous sample space.  
 
In examples a, b, and d the sample space has a finite number of elements.  
In example c the sample space consists of all natural numbers, thereby being infinite, but 
the elements can be numbered. All situations above are examples of discrete sample spaces.  
 
In example e we have a continuous sample space. 
 
Event 
The elements of the sample space constitute the ultimate breakdown of the results into 
distinct possibilities (elementary outcomes). Several elementary outcomes may often exhibit 
some common descriptive feature, and taken together, they constitute a composite event, or 
only event, having the stated feature. Suppose, for example, that the feature of interest 
when rolling a die is whether at least 4 eyes face up. Then the event is the set A={4, 5, 6}, 
i.e. a subset of the sample space S. The event A occurs if the die shows 4, 5, or 6 eyes.   
When the sample space is finite, any subset of the sample space may constitute an event. 
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Random variable 
A random variable, usually expressed as (capital) X, is a function of the outcome in a 
random experiment. For each elementary outcome X(e) takes a distinct numerical value. X 
may have the same value for different elementary outcomes, but can have strictly one value 
for each outcome.  
 
Example: Tossing a coin twice. As an example, the (elementary) outcome HT means 
”head” in the first toss and  ”tail” in the second toss, and so one. 
 The sample space is S = {HH, HT, TH, TT} with elementary outcomes e1 = HH, e2 = HT,  
e3=TH and e4 = TT. If the numbers of heads is the event of interest, we get: 
 
X(e1)=2,  X(e2)=1,  X(e3)=1,  X(e4)=0 
 
 
Usually, the argument e is omitted in the expression of a random variable. In the example 
above X will be defined as:  

 
 0,  

1,
2,  

e TT
X e TH or HT

e HH

=⎧
⎪= =⎨
⎪ =⎩
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Discrete random variable 
 
A random variable that can assume only a finite number of values or possibly 
an infinite number of values that can be arranged in a sequence and counted 
is called a discrete random variable. 

 
The probability distribution or simply, the distribution of a discrete random variable is a 
list of the distinct values xi of X together with their associated probabilities P(X = xi). Often 
a formula can be used in place of a detailed list (see Binomial distribution later on). 
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Probability distribution of a discrete random variable – probability 
mass function 
 
Rolling a fair die. Random variable X is number of eyes facing up. Possible values of X are 
x=1, 2, 3,..., 6.  P(X = x) = 0.5 for all values of x (uniform distribution.) 
 

 
 
 
 

   x 1 2 3 4 5 6 
P(X=x) 1/6 1/6 1/6 1/6 1/6 1/6 
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Probability distribution – hypertension-control example  
 
Ex. 4.6: Probability distribution for number of patients out of 4 patients achieving 
normotension after treatment 
 
 

 
 
Note that the probability for a distinct value x always is a number between 0 and 1, and 
that the all probabilities always add up to exactly 1. 
 
 
 

    x 0 1 2 3 4 
P(X=x) 0.008 0.076 0.265 0.411 0.240 
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The Expected value of a Discrete random variable 
 
The expected value (expectation, “mean”) is a measure of the “centre of gravity” of the 
probability mass distribution.  
 
Imagine a metal block cut in the shape of the probability histogram. Then the expected 
value represents the point on the base at which the block will balance. 
 
The expected value is calculated as a weighed mean of all possible vales of the random 
variable. The weights are the probabilities of each the different value of the variable. 
 
 

[ ] ( ) ( ) ... ( ) ( )
n

1 1 2 2 n n i i
i 1

E X x P X x x P X x x P X x x P X x
=

μ = = = + = + + = = =∑
A special case: If the distribution is uniform, the expectation is equivalent to the arithmetic 
mean of all possible values of the random variable. 
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Expected value  -  example  
 
 
Rolling a die, uniform distribution.  X is possible number of eyes,  x is possible value of X 
 

[ ] ( )

( ) ( ) ( )
( ) ( ) ( )

.

6

x 1

1 1 1 1 1 1 21
6 6 6 6 6 6 6

E X x P X x

1 P X 1 2 P X 2 3 P X 3
4 P X 4 5 P X 5 6 P X 6
1 2 3 4 5 6 3 5

=

= =

= ⋅ = + ⋅ = + ⋅ =
+ ⋅ = + ⋅ = + ⋅ =

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ = =

∑

 

 
The expected value is the arithmetic mean of the possible values of the number of eyes, and 
corresponds to the mean number of eyes observed in (infinitely) repeated number of times.  
 
Note that the expected value doesn’t belong to the sample space. 

      x 1 2 3 4 5 6 
  P( X =x) 1/6 1/6 1/6 1/6 1/6 1/6 
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Expected value - example 
 
Ex. 4.6: Expected value of the number of patients out of 4 patients achieving normotension 
after treatment.  
 
 

 

[ ] ( )

( ) ( ) ( ) ( ) ( )
. . . . . .

4

x 0
E X x P X x

0 P X 0 1 P X 1 2 P X 2 3 P X 3 4 P X 4
0 0 008 1 0 076 2 0 265 3 0 411 4 0 240 2 80

=

μ = = =

= ⋅ = + ⋅ = + ⋅ = + ⋅ = + ⋅ =
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

∑

 
Note that this is the population mean. It is calculated without using real data, nor doing any 
experiment.  
 
 

    x 0 1 2 3 4 
P(X=x) 0.008 0.076 0.265 0.411 0.240 
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Variance of a Discrete random variable 
 
The variance, denoted Var(X) or simply 2σ , is a measure of the deviation of X from µ, or 
equivalently a measure of spread in the distribution of X. 
 

    
( ) ( ) ( )

n
2 2

i i
i 1

Var X x P X x
=

σ = = −μ ⋅ =∑  

 
Note that the variance is the expectation of ( ) 2X − μ and so can be expressed as 
 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 2 2 2

22 2 2

Var X E X E X 2 X

E X 2 E X E X 2

E X E X E X

⎡ ⎤= − μ = − μ + μ⎣ ⎦
= − μ ⋅ + μ = − μ + μ

= − μ = −  
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Variance - example 
 
Ex. 4.9: Variance of the number of patients out of 4 patients achieving normotension after 
treatment 
 

 
( ) .

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) .
. . . . . .

4
2 2 2

x 0
2 2 2

2 2 2

2 2 2 2 2

E X 2 8

Var X x P X x E X

0 P X 0 1 P X 1 2 P X 2
3 P X 3 4 P X 4 2 8
1 0 0076 2 0 265 3 0 411 4 0 240 2 8 0 835

=

= μ =

= −μ ⋅ = = −μ

= ⋅ = + ⋅ = + ⋅ =

+ ⋅ = + ⋅ = −

= ⋅ + ⋅ + ⋅ + ⋅ − =

∑

 

 

    x 0 1 2 3 4 
P(X=x) 0.008 0.076 0.265 0.411 0.240 
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Standard deviation 
 
The positive root of the variance is called the standard deviation: 
 
 

 ( ) ( ) 2SD X Var X≡ + = + σ = σ  
 

 
Example 4.9 (hypertension): 
 

( ) .

( ) . .

Var X 0 835

SD X 0 835 0 914

=

= =   

  
Note that alike the variance, the standard deviation too is a non-negative quantity. 
Accordingly, it is nonsense to give the standard deviation as .0 914± . 
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Probability distribution and frequency distribution 
Example 4.8: Sample-frequency-distribution and the theoretical-probability distribution 
for the hypertension example. Each of 100 physicians treats 4 patients each.  
 

 
Expected value  (estimated expectation) based on sample data: 

( )

( ) ( ) ( ) ( ) ( )
. . . . .

4

x 0
x P X x

0 P X 0 1 P X 1 2 P X 2 3 P X 3 4 P X 4
0 1 0 09 2 0 24 3 0 48 4 0 190 2 77

=

=

= ⋅ = + ⋅ = + ⋅ = + ⋅ = + ⋅ =
= + ⋅ + ⋅ + ⋅ + ⋅ =

∑

 

Number of hypertonics 
under control = x 

Probability 
distribution P(X=x) 

Frequency distri-
bution (observed) 

0 0.008 0.00 =0/100 
1 0.076 0.09 =9/100 
2 0.265 0.240 =24/100 
3 0.411 0.480 =48/100 
4 0.240 0.190 =19/100 
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Comparison of the frequency and true probability distribution in the 
hypertension-control example 
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Counting and its use in uniform probability models 
 
Uniform probability models are in particular useful in experiments where all elementary 
outcomes in the sample space S are equally likely. The probability of an event A is given by 
 

( ) Number of elements in AP A
Number of element in S

=  

 
 
When convenient methods of counting are available, we can omit listing all elements in S. 
 
Example: There are r red balls and b black balls in a box (urn). One ball is drawn at 
random.  What is the probability to draw a red ball? All balls have equal probability 
to be drawn (uniform probability). 
 

( e ) r
r b

Number of red ballsP R d ball
Number of balls

=
+

=  
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Combinations and permutations 
 
 
Combinations of experiments 
 
Two examples: 
 

1) A cafeteria offers a dinner consisting of 3 dishes with possibility to choose one starter 
among 3, one main dish among 6, and one dessert among 4. How many different 
dinners are possible?  Answer: 3 6 4 72⋅ ⋅ = . 

 
2) Football betting. Twelve matches, each with 3 possible outcomes. Number of possible 

rows in a betting slip (tippekupong): 123 3 3 ... 3 3 531441⋅ ⋅ ⋅ ⋅ = = . 
Rule:  
When an experiment consists of K parts, each having ki distinct results,  and if 
we wish to combine results, one form each part, then the total number of 
possible result of the experiment is 1 2 ,,, Kk k k⋅ ⋅ ⋅ .  
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Sampling with replacement when order matters 
In a box (urn) there are n balls numbered from 1 to n. A ball is selected with replacement  k 
times from the box. In how many ways can that be done?  
 

 
At the first drawing there are n possibilities. The ball is put back in the box, and in the next 
selection there are again n possibilities, and so one. This is done k times. In particular, the 
same ball may be selected several times. The total number of combinations of k numbered 
balls will be ... kn n n n n⋅ ⋅ ⋅ ⋅ = . 
 
Rule:  
When k objects is drawn with replacement from a collection of n distinct objects 
the total number of combinations is nk .  
 
 
Example: In the  international alphabet (A, B, C,…,Z) there are 26 different letters. For a 
car registration number with 2 letters 262 = 676 pairs of letters can be created if the same 
letter is allowed to appear both times. 
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Sampling without replacement when order matters 
In a box (urn) there are n balls numbered from 1 to n. A ball is selected without 
replacement  k times from the box. In how many ways can that be done? 
 

 
At the first selection there are n possibilities, at the next one (n-1) possibilities, thereafter 
(n-2) and so on. 
 (n-(k-1)) balls remain in the box before the kth selection giving (n-(k-1))=(n-k+1) 
possibilities for the last selection. So, when the order of selection matters, the total number 
of combinations of k numbered balls is    

( ) ... ( )n kP n n 1 n k 1= − ⋅ ⋅ − +  
 
Rule:  
The number of possible orderings or arrangements of k objects selected from n 
distinct objects is nPk  =  ( )( ) ... ( )n n 1 n 2 n k 1− − ⋅ ⋅ − + . 
  
 
Example: From the international alphabet it can be created 

( ) ... ( )26 4P 26 26 1 26 4 1 26 25 24 23 358800= − ⋅ ⋅ − + = ⋅ ⋅ ⋅ =  different codes consisting of 4 different 
letters if the order matters. 
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The rule above has as a consequence  that if all balls , i.e. k=n, are drawn without 
replacement, it can be done in   
 
  ( )( ) ...n nP n n 1 n 2 3 2 1= − − ⋅ ⋅ ⋅ ⋅  
 
different ways. 
 
The expression  ( )( ) ...n n 1 n 2 3 2 1− − ⋅ ⋅ ⋅ ⋅  is written n! and read  ”n factorial” (no.: n 
fakultet). By definition,  0!=1.  
 
Corollary: The number of permutations of n objects is n!   
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Sampling without replacement when order doesn’t matter 
If k balls are drawn out of n balls without replacement, there are 

( )( ) ... ( )n kP n n 1 n 2 n k 1= − − ⋅ ⋅ − +  ordered samples of k balls. These k balls can afterwards 
be permuted k! times.  If the order doesn’t matter, but only which balls are drown (as in 
Lotto), the question to be addressed is how many non-ordered samples of k balls can 
appear. We call this number n kC . Every non-ordered sample can be permuted k! times 
giving the equality 

!n k n kP C k= ⋅  
 

This gives 
( )( ) ( )

! !
n k

n k
P n n 1 n 2 n k 1C

k k
− − ⋅ ⋅ ⋅ − +

= =  

 
  

( )( ) ( ) ( )! !
! ( )! !( )!

nn n 1 n 2 n k 1 n k n
kk n k k n k

⎛ ⎞− − ⋅ ⋅ ⋅ − + ⋅ −
= = = ⎜ ⎟⋅ − − ⎝ ⎠  
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The shorthand notation  
n
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is called the binomial coefficient,  read ”n over k”  or “k out of 

n”, and  must no be confused with n
k

. 

 
Rule 4: The number of possible collection of k object chosen from a group of n 
distinct objects is  
 

!
!( )!n k

n nC
k k n k

⎛ ⎞
= =⎜ ⎟ −⎝ ⎠  

 
Example: Lotto. Seven numbered balls out of  34 are drown without replacement.  
Number of possible combinations: 
 

  
! ! ...

!( )! ! ! !34 7
34 34 34 34 33 28C 5379616
7 7 34 7 7 27 7
⎛ ⎞ ⋅ ⋅ ⋅

= = = = =⎜ ⎟ − ⋅⎝ ⎠  
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Binomial series of trials (no.: binomisk forsøksrekke) 
 
An experiment characterized by  
 

i) The experiment consists of n independent trials 
ii) In each trial it  recorded whether one specific event A occurs or not (A*) 
iii) P(A )= p (success probability) in all trials (implies that ( *)P A 1 p q= − = ) 

 
is called a binomial series of  trials.  
 
Examples of binomial series of trials: 
 

1) Tossing a coin n times recording number of heads (“head” is success) 
2) Sowing n seeds and recording how many seeds sprouting after a certain 

time  (“sprouting” is success) 
3) Recording how many childbirths resulting in girl (“girl” is success) 
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Binomial distribution 
 
Let X (random) be the number of n independent trials resulting in the event A.  P(A)=p, 
P(A*)=1-p. As an example, if n=3, we investigate the distribution of X. The sample space S 
has 23 =8 elementary outcomes  
 

  Sample space (S) Elementary     
outcomes 

   P(ei)   X 

    A*A*A*         e1     (1-p)3   0 
    A*A*A         e2    p (1-p)2   1 
    A*A A*         e3    p (1-p)2   1 
    A A*A*         e4     p (1-p)2   1 
    A A A*         e5    p2 (1-p)   2 
    A A*A         e6    p2 (1-p)   2 
    A *A A         e7    p2 (1-p)    2 
    A A A          e8       p3   3 

 
 
Probability mass distribution : 
 
P(X=0)= (1-p)3, P(X=1)= 3(1-p)2p, P(X=2)= 3(1-p)p2,  P(X=3)= p3 
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Probability mass function: 
 

  ( ) ( )k 3 k3
P X k p 1 p

k
−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠ ,  k=0, 1, 2, 3 

 
In general, in n trials the probability to get k outcomes A 

  ( ) ( )k n kn
P X k p 1 p

k
−⎛ ⎞

= = −⎜ ⎟
⎝ ⎠  

 
Example: Suppose that the probability of “girl” in a single childbirth is .p 0 5= . What is the 
probability of 9 girls in  18 independent childbirths? 
 

Binomial model: 
 n=18 independent trials 

    A = ”girl” in a trial   
    P(A)=p =0.5 in each trial 
    X = number of  A in n=18 trials 

( ) . ( . ) . . . .9 18 9 9 9 1818 18 18
P X 9 0 5 1 0 5 0 5 0 5 0 5 0 186

9 9 9
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = − = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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In practice, it is seldom of interest to calculate the probability of exactly k successes, but 
rather probabilities of the type ( )P X k≤  or ( )P X k> .  
We the have the formula 
 

( ) ( )
k

i n i

i 0

n
P X k p 1 p

i
−

=

⎛ ⎞
≤ = −⎜ ⎟

⎝ ⎠
∑       i=0, 1, 2,…,k 

 
Example, cont.: A fortune-teller claims she is clairvoyant and claims she is able to predict 
the sex in a childbirth. She predicts correctly in 14 of 18 cases. Does she simply guess?  
 

Question to be addressed: What is the probability to predict correctly in at least 14 out 
of 18 times given that she simply guesses, i.e. p=0.5?  

 
 

( ) ( ) ( ) ( ) ( ) ( )
. . . . . . (fra tabell)

P X 14 P X 14 P X 15 P X 16 P X 17 P X 18
0 0117 0 0031 0 0006 0 0001 0 0000 0 0155

≥ = = + = + = + = + =
= + + + + =

 

 
 
The probability to predict correctly just by chance at least 14 out of 18 times is “low”, 
“unlikely”,  thus indicating supernatural power.  
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Expectation and variance of indicator variable 
 
Trial with two possible outcomes  
 
 

Indicator variable: 
, ( )
*, ( *)

1 at outcome A P A p
I

0 at outcome A P A 1 p q
=⎛

= ⎜ = − =⎝
 

 
( ) ( ) ( )E I 1 P I 1 0 P I 0 p= ⋅ = + ⋅ = =  

 
( ) ( ) ( )2 2E I 1 P I 1 0 P I 0 p= ⋅ = + ⋅ = =  

 
( )( ) ( ) ( )( ) 22 2Var I E I p p p 1 p pqE I= − = − = − =  
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Expectation and variance in binomial distribution 
 
Number of A in n independent trials: ..

n

1 2 n i
i 1

X I I I I
=

= + + + = ∑  

 
Expectation: 

( ) ( ) ( ) ... ( ) ...1 2 nE X E I E I E I p p p np= + + + = + + + =  
 
Independent trials (independence, no covariances ) result in: 
 

( ) ( ) ( ) ... ( ) ... ( )1 2 nVar X Var I Var I Var I pq pq pq npq np 1 p= + + + = + + + = = −  
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Poissonfordeling – ekstrastoff (bonus, ikke pensum) 
 
Noen ganger har man å gjøre med en binomisk forsøksrekke der n er stor og p er svært 
liten. Forventet antall enkeltutfall er som alltid npμ= . Under betingelsene ovenfor kan det 
da vises at 
 

  ( )
!

k

P X k e
k

−μμ
= =  

 
Dette er poissonfordelingen, og det kan videre vises at ( ) ( )E X Var x= = μ  
 
Eksempler på poissonfordelte hendelser: 
 

i) Utsending partikler fra en radioaktiv kilde over et visst tidsrom 
ii) Antall kollisjoner i en sterkt trafikkert veikryss over et visst tidsrom 
iii) Antall sjeldne celler i et synsfelt under mikroskopet 
iv) Antall tilfeller av en sjelden sykdom i en stor populasjon over en viss tidsperiode 


