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Sequential and Group Sequential Designs in
Clinical Trials: Guidelines for Practitioners

Madhu Mazumdar and Heejung Bang

Abstract

In a classical fixed sample design, the sample size is set in advance of collecting
any data. The main design focus is choosing the sample size that allows the
clinical trial to discriminate between the null hypothesis of no difference and the
alternative hypothesis of a specified difference of scientific interest. A disad-
vantage of fixed sample design is that the same number of subjects will always
be used regardless of whether the true treatment effect is extremely beneficial,
marginal, or truly harmful relative to the control arm. Often, it is difficult to
Justify because of ethical concerns and/or economic reasons. Thus, specific
early termination procedures have been developed to allow repeated siatistical
analyses to be performed on accumulating data and to stop the trial as soon as
the information is sufficient to conclude. However, repeated analyses inflate the
Jalse positive error to an unacceptable level. To avoid this problem, many
approaches of group sequential methods have been developed. Although there is
an increase in the planned sample size under these designs, due to the sequential
nature, substantial sample size reductions compared with the single-siage
design is also possible not only in the case of clear efficacy but also in the case
of complete lack of efficacy of the new treatment. This feature provides an
advantage in utilization of patient resource. These approaches are methodo-
logically complex but advancement in software packages had made the plan-
ning, monitoring, and analysis of comparative clinical trials according o these
approaches quite simple. Despite this simplicity, the carrying on of a trial under
group sequential design requires efficient logistics with dedicated team of data
manager, study coordinator, biostatistician, and clinician. Good collaboration,
rigorous monitoring, and guidance offered by an independent data safety mon-
itoring committee are all indispensable pieces for its successful implementation.

In this chapter, we provide a review of sequential designs and discuss the
underlying premise of all current methods. We present a recent example and
an historical example to illustrate the methods discussed and to provide a flavor
of the variety and complexity in decision making. A comprehensive list of
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softwares is provided for easy implementation along with practical guidelines.
Few areas with potential for future research are also identified.

1. Introduction

Randomized clinical trial (RCT) is regarded as the gold standard for assessing the
relative effectiveness/efficacy of an experimental intervention, as it minimizes
selection bias and threats to validity by estimating average causal effects. There
are two general approaches for designing RCT: (1) fixed sample design (FSD) and
(2) group sequential design (GSD). In FSD, a predetermined number of patients
(ensuring a particular power for proving a given hypothesis) are accrued, and the
study outcome is assessed at the end of the trial. In contrast, a design where
analyses are performed at regular intervals after a group of patients are accrued is
called GSD. In comparative therapeutic trials with sequential patient entry, FSDs
are often unjustified on ethical and economic grounds, and GSDs are preferred
for their flexibility (Geller et al., 1987; Fleming and Watelet, 1989). Currently
used methods can be classified into three categories: group sequential methods for
repeated significance testing; stochastic curtailment or conditional power (Lan
et al., 1982; Pepe and Anderson, 1992; Betensky, 1997) and Bayesian sequential
methods (Spiegelhalter and Freedman, 1994; Fayers et al., 1997). While no single
approach addresses all the issues, they do provide useful guidance in assessing the
emerging trends for safety and benefit.

Trials using GSDs are common in published literature and the advantage of
this kind of design is self evident by their impact (Gausche et al., 2000; Kelly
et al., 2001; Sacco et al., 2001). One example of its successful use is a trial reported
by Frustaci et al., where 190 sarcoma patients (a rare form of cancer) were to be
accrued in order to detect a 20% difference in 2-year disease-free survival (60%
on the adjuvant chemotherapy treatment arm versus 40% in the control arm
undergoing observation alone) (Frustaci et al., 2001). An interim analysis was
planned after half of the patients were accrued with stopping rule in terms of
adjusted p-value. The trial was stopped as this criterion was met thereby saving
50% of the planned patient accrual. The observed difference was found to be 27%
(72% on the treatment arm versus 45% on the control arm), 7% higher than what
was hypothesized initially- at the design stage. Therefore, the risk of treating
additional patients with suboptimal therapy was greatly reduced.

Independent data safety monitoring committee (DSMC) with responsibilities
of (1) safeguarding the interests of study patients, (2) preserving the integrity and
credibility of the trial in order to ensure that future patients be treated optimally,
and (3) ensuring that definitive and reliable results be available in a timely manner
to the medical community has been mandated for all comparative therapeutic
clinical trials sponsored by national institutes (URL: http://cancertrials.nci.nih.
gov; Ellenberg, 2001). GSD provides an excellent aid to the DSMC for decision
making. Other names utilized for this kind of committees playing virtually
the same role are data or patient safety monitoring board (DSMB or PSMB),
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data monitoring and ethics committees (DMEC), and policy and data monitoring
board (PDMB).

In this chapter, we start with a historical account of sequential methods and
provide introduction to the underlying concept and approaches to the commonly
utilized methods of inflation factor (IF) for sample size calculation and alpha
spending function for monitoring the trials for early stopping. A listing of soft-
wares is provided that has the capabilities of accommodating all of the methods
discussed. A table of IF for sample size calculation of GSD is provided for quick
assessment of feasibility of a trial (in regard to sample size) even before acquiring
any special software for GSD. One current example is presented with standard
template of a biostatistical consideration for writing study protocol, details of
a stopping boundary utilized, items to be included in an interim analysis reports
presented to the DSMC, and the substance included in the statistical section
write-up for final dissemination in published literature. Another historical exam-
ple (the BHAT trial) is discussed to highlight that the DSMC’s decision to stop
early was based not only on statistical group sequential boundary point, but also
on a variety of other subjective considerations.

Several review papers and books from various perspectives are recommended
to those who wish to learn about further details (Fleming and DeMets, 1993;
Jennison and Turnbull, 2000; Sebille and Bellissant, 2003; Proschan et al., 2006).

2. Historical background of sequential procedures

The first strictly sequential method, the sequential probability ratio test, was
developed during the Second World War (Wald, 1947). As its main application
was the quality control of manufactured materials, its publication was only au-
thorized after the end of the war, in 1947, Another class of sequential test is based
on triangular continuation regions (Anderson, 1960). The basic idea on which
these methods rely is to constantly use the available information to determine
whether the data are compatible with null hypothesis, with alternative hypothesis,
or insufficient to choose between these two hypotheses. In the first two cases, the
trial is stopped and the conclusion is obtained whereas in the third case the
trial continues. The trial is further processed until the data allows a legitimate
(or per-protocol) decision between the two hypotheses. An example of a com-
pletely sequential trial can be found in Jones et al. (1982).

Armitage (1954) and Bross (1952) pioncered the concept of group sequential
methods in medical field (Bross, 1952; Armitage, 1954). At first, these plans were
fully sequential and did not gain widespread acceptance perhaps due to the
inconvenience in their application. The problems discussed included the fact that
response needs to be available soon after the treatment is started and that there
would be organizational problems, such as coordination in multicenter trials and
a much greater amount of work for the statistician. The shift to group sequential
methods for clinical trials did not occur until the 1970s. Elfring and Schultz
(1973) specifically used the term ‘group sequential design’ to describe their pro-
cedure for comparing two treatments with binary response (Elfring et al., 1973).
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McPherson (1974) suggested that the repeated significance tests of Armitage et al.
(1969) might be used to analyze clinical trial data at a small number of interim
analyses (Armitage et al., 1969; McPherson, 1974). Canner (1977) used Monte
Carlo simulation to find critical values of a test statistic for a study with periodic
analyses of survival endpoint (Canner, 1977). However, Pocock (1977) was the
first to provide clear guidelines for the implementation of the GSD attaining
particular operating characteristics of type I error and power (Pocock, 1977).
He made the case that most investigators do not want to evaluate results every
time a couple of new patients are accrued but do want to understand the com-
parative merit every few months to assess if the trial is worth the time and effort
and that continual monitoring does not have a remarkable benefit. More
specifically, only a minor improvement is expected with more than five interim
looks. A more comprehensive account of this history can be read from the
excellent book by Jennison and Turnbull (2000).

3. Group sequential procedures for randomized trials

A primary difficulty in performing repeated analyses over time is the confusion
about the proper interpretation of strength of evidence obtained from such eval-
uations. Suppose that only a single data analysis is performed after data collec-
tion has been fully completed for a trial. Then a two-sided (or one-sided if
justified, e.g., non-inferiority design) significance value of p <0.05, obtained from
a test of hypothesis of no difference between an experimental therapy and a
control, is usually interpreted as providing strong enough evidence that the new
therapy provides an advantage. The interpretation is justified by the willingness of
investigators to accept up to five false-positive conclusions in every 100 trials of
regimens that, in truth, have equivalent efficacy. Unfortunately, even when a new
treatment truly provides no advantage over a standard therapy, performing
repeated analyses can greatly increase the chance of obtaining positive conclu-
sions when this p < 0.05 guideline is repeatedly used.

As such, interim data safety reports pose well-recognized statistical problems
related to the multiplicity of statistical tests to be conducted on the accumulating
set of data. The basic problem is well known and is referred to as “sampling to a
foregone conclusion” (Cornfield, 1966) and has been illustrated mathematically,
pictorially or through simulations by many researchers (Fleming and Green,
1984). Specifically, in a simulation of 100 typical clinical trials of two interven-
tions with truly equivalent efficacy that called for up to four periodic evaluations,
17 (rather than five) trials yielded false-positive conclusions (i.e. p<0.05) in at
least one analysis. The rate of false-positives continues to rise as the frequency of
interim analyses rises. This serious increase in the likelihood of reaching false-
positive conclusions due to misinterpretation of the strength of evidence when
repeated analyses are conducted over time partly explains why many published
claims of therapeutic advances have been false leads and provides the motivation
for development of GSD.
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A GSD first provides a schedule that relates patient accrual to when the
interim analyses will occur. This schedule is conveniently expressed in terms of the
proportion of the maximal possible number of patients that the trial could accrue.
Second, such designs give a sequence of statistics used to test the null hypothesis,
and third, they give a stopping rule defined in terms of a monotone increasing
sequence of nominal significance levels at which each test will be conducted. This
sequence of significance levels is carefully chosen to maintain the overall type I
error at some desired level (e.g., 0.05 or 0.10) using one- or two-sided hypothesis.
Either the number or the time of analyses is prespecified or the rate at which the
overall significance level is “used up” is fixed in advance. Thus, undertaking
group sequential trials assumes that hypothesis testing at nominal significance
levels less than a prestated overall significance level will be performed, and that if
results are ever extreme enough to exceed prespecified thresholds, the trial should
be stopped. While such group sequential procedures differ in detail, they have
certain common features.

The two commonly discussed pioneering mechanisms in GSD are given by
Pocock (Pocock, 1977) and O’Brien and Fleming (OBF) (O’Brien and Fleming,
1979). Pocock adapted the idea of a repeated significance test at a constant
nominal significance level to analyze accumulating data at a relatively small
number of times over the course of the study. Patient entry was divided into
equally sized groups and the data are analyzed after each group of observations
has been collected. As an alternative, OBF proposed a test in which the nominal
significance levels needed to reject the null hypothesis at sequential analyses
increase as the study progresses, thus, making it more difficult to reject the null
hypothesis at the earliest analysis but easier later on. Other variations to these
schemes have also been developed but OBF is the most commonly utilized GSD
as it fits well with the wishes of clinical trialists who do not want to stop a trial
prematurely with insufficient evidence based on less reliable or unrepresentative
data. There are other reasons for this preference. Historically, most clinical trials
fail to show a significant treatment difference, hence from a global perspective, it
is more cost-effective to use conservative designs. Indeed, even a conservative
design such as OBF often shows a dramatic reduction in the average sample
number (ASN or expected sample size) under the alternative hypothesis, Ha,
compared to a FSD (see Table 1 for brief overview). Moreover, psychologically, it
is preferable to have a nominal p-value at the end of the study for rejecting the
null hypothesis, Ho, which is close to 0.05 in order to avoid the embarrassing
situation where, say, a p-value of 0.03 at the final analysis would be declared
non-significant.

Table 1
General properties of monitoring designs

Design General ASN (under Hg) ASN (under Hp)
Fixed Most conservative Low Large
OBF Conservative, hard to stop early Mid Mid

Pocock Most liberal, early stopping properties Large Low
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Later, Wang et al. (1987) proposed a class of generalized formulation that
encompasses Pocock and OBF methods as two extreme members.

Although the formulation of GSD started with binary outcomes, a generalized
formulation has helped establish the wide applicability of the large sample theory
for multivariate normal random variables with independent increments (i.e.,
standardized partial sums) to group sequential testing (Jennison and Turnbull,
1997 Scharfstein et al., 1997). This structure applies to the limiting distribution of
test statistics which are fully efficient in parametric and semiparametric models,
including generalized linear models and proportional hazards models (Tsiatis
et al., 1995). It applies to all normal linear models, including mixed-effects models
(Lee and Demets, 1991; Reboussin et al., 1992). Gange and Demets showed its
applicability to the generalized estimating equation setting and Mazumdar and
Liu showed the derivation for the comparative diagnostic test setting where area
under the receiver operating characteristic curve is the endpoint (Mazumdar and
Liu, 2003; Mazumdar, 2004). In short, almost any statistic likely to be used to
summarize treatment differences in a clinical trial will justify group sequential
testing with this basic structure and common mathematical formulation (Jennison
and Turnbull, 2000).

3.1. Power and sample size calculation using inflation factor

Sample size computation in GSD setting involves the size of the treatment effect
under some non-null hypothesis, the standard error of the estimated treatment
offect at the end of the trial, and the drift of the underlying Brownian motion used
to model the sequentially computed test statistics. The appropriate drift is
determined by multiple factors such as the group sequential boundaries, type I
error, and desired power. The theoretical background for design of group
sequential trials has been discussed elsewhere (Kim and DeMets, 1992; Lan and
Zucker, 1993) but the drift of commonly used GSDs can be easily translated into
the corresponding IFs, provided in Table 2. The sample size approximation for a
GSD in any setting is simply obtained by multiplying the sample size under the
corresponding FSD by the IF provided in this table for the features of the specific
GSD chosen. It is easy to note that the sample size inflation under OBF 1s
minimal.

3.2. Monitoring boundaries using alpha spending functions

The earlier publications for group sequential boundaries required that the
pnumber and timing of interim analyses be fixed in advance. However, while
monitoring data for real clinical trials, it was felt that more flexibility in being able
to look at the data at time points dictated by the emerging beneficial or harmful
trend is desired. To accommodate this capability, Lan and Demets proposed a
more flexible implementation of the group sequential boundaries through an
innovative ‘alpha spending function’ (Lan and Demets, 1983; Lan and DeMets,
1989). The spending function controls how much of the false-positive error
(or false-negative error when testing to rule out benefit) can be used at each
interim analysis as a function of the proportion (#*, range 0 (study start)—1 (study




Sequential and group sequential designs in clinical trials 497

Table 2
Inflation Factors for Pocock and O’Brien—Fleming alpha spending functions for different total num-
bers of looks (K) under equal-sized increments

o = 0.05 (Two-sided) o = 0.01 (Two-sided)

K Spending function Power (1-f) K Spending function Power (1-f)

0.80 090 095 0.80 090 0.95
2 Pocock .11 110 109 2 Pocock 1.09 1.08 1.08
2 OBF 101 1.01 101 2 OBF 1.00  1.00 1.00
3 Pocock 1.17 115 114 3 Pocock .14 112 112
3 OBF .02 1.02 102 3 OBF .01 101 1.01
4 Pocock 120 118  1.17 4 Pocock .17 L15 1.14
4 OBF .02 1.02 102 4 OBF 1.01 101 1.01
5 Pocock 1.23  1.21 .19 5 Pocock 1.19 117 1.16
5 OBF .03 1.03 102 5 OBF 1.02 1.01 1.01

end)) of total information observed. In many applications, * may be estimated as
the fraction of patients recruited (for dichotomous outcomes) or the fraction of
events observed (for time to event outcomes) out of the respective total expected.
The alpha spending functions underlying OBF GSD correspond to

S Z —{&
OCl(lw) =2 — 2D {—(—;)(1 //;)1 s

whereas the one for Pocock is described by

The advantage of the alpha spending function is that neither the number nor
the exact timing of the interim analyses needs to be specified in advance. Only the
particular spending function needs to be specified. It is useful to note that the
nominal significance levels utilized in any GSD will always add up to more than
the overall significance level, because with multiple significance testing the prob-
ability of rejecting the null hypothesis does not accumulate additively due to
positive correlations among test statistics.

Following is a sample ‘Biostatistical Consideration” write-up for a clinical trial in
Germ Cell Tumor (GCT) utilizing GSD with OBF boundaries. IF approach with
three total looks (K = 3) was chosen at design stage and a series of boundaries and
sequence of significance level were computed accordingly. The option of utilizing
spending function approach was also kept open, which is often the case in practice.

3.3. Design of a phase 3 study with OBF GSD: A sample template

3.3.1. Biostatistical considerations

1. Objective and background:. The objective of this study is to compare in a pro-
spective randomized manner the efficacy of an experimental combination
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regimen versus the standard regimen in previously untreated ‘poor” risk GCT
patients. The poor risk criterion helps identify patients who are expected to
have high probability of worse outcome. It is described in the protocol and
roughly depends on the primary site, histology, and specific blood markers
being high. For this kind of cancer, a patient’s prognosis is considered to be
favorable if their tumor completely disappears and does not come back at least
for a year. The response of these patients is called durable complete responder
(DCR) at one year. In the institutional database at Memorial Sloan—Kettering
Cancer Center (MSKCC) of size 796 patients treated by standard therapy,
the proportion of patients remaining DCR at one year for the poor risk group
(n = 141) is 30% with a 95% confidence interval (Cl) of 22.2-37.3%.

2. Primary endpoint, power and significance level: The major endpoint for this trial
is DCR at one year where the time is computed from the day a patient is
defined responder. This study is planned to detect a 20% absolute difference
from the currently observed rate of 30% (30% versus 50%). We are expecting
an accrual of 50 patients per year. The sample size calculation based on
log-rank test for an FSD with 80% power and 5% level of significance, 195
patients will be needed. To incorporate two interim looks and a final look
(so total K = 3) at the end of full accrual, an IF of 1.02 was multiplied to 195
requiring 199 patients (= 1.02x 195) using OBF method (O’Brien and
Fleming 1979). Rounding it off to 200 patients (100 per arm), we decide to
place the two interim looks at the end of second and third year and the final
Jook at the end of fourth year as the accrual rate of 50 patients makes the
length of study to be four years.

3. Randomization: After eligibility is established, patients will be randomized via a
telephone call to the coordinating center at MSKCC clinical trial office (Phone
pumber: XXX-XX-XXXX; 9:00 am to 5:00pm Monday through Friday).
Randomization will be accomplished by the method of stratified random
permuted block, where patient institution (MSKCC versus ECOG versus
SWOG versus remaining participating institutions) was adopted for stratifi-
cation, where ECOG denotes Fastern Cooperative Oncology Group and
SWOG denotes Southwest Oncology Group.

4. Data safety monitoring committee and interim analyses: The data will be
reviewed at designated intervals by an independent DSMC. This committee
was formed with two independent oncologists and one independent biostat-
istician. The committee will be presented with the data summary on accrual
rates, demographics and bio-chemical markers etc. and comparative analysis
(using Fisher’s exact test) on toxicity and DCR proportion by the principal
investigator (PT) and the biostatistician on study. Survival and progression-free
survival curves will be estimated only if there is an enough number of
events that governs statistical power. Semi-annual reports on toxicity will be
disseminated to all the participating groups.

Normalized z-statistics according to the OBF boundary to be used for stopping
early if the experimental regimen looks promising are +3.471, +2.454, +2.004,
where the corresponding sequence of nominal significance levels are 0.001, 0.014,
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and 0.036, respectively (East, Cytel Statistical Software). If situation emerges
where these time points are not the most convenient or desirable, Lan—Demets
spending function utilizing OBF boundaries will be used to compute the corre-
sponding z-statistics and significance level. The committee is expected to use the
statistical stopping rules as a guideline in addition to both medical judgment and
the relevant emerging data in the literature, especially ones obtained from similar
trials.

5. Final analysis: All toxicities will be evaluated based on the NCI common tox-
icity criteria and tabulated by their frequencies and proportions. Fisher’s exact
test will be used to compare the toxicities and adverse events by the two arms.
The primary analysis, DCR-free survival curves will be estimated using
Kaplan-Meier method and with appropriate follow-up, comparisons will be
made using log-rank test (Kaplan and Meier, 1958; Mantel, 1966). Once the
trial stops (either at interim look or at final look), standard statistical estima-
tion and inference will be undertaken for the observed treatment difference.

3.4. Analyses following group sequential test

Analysis following a group sequential test consists of two scenarios: The first is
upon conclusion of the trial after the test statistic has crossed a stopping bound-
ary and the second is when an interval estimate of the treatment difference is
desired whether the design calls for a termination or not. Tsiatis et al. (1984) have
shown that in both situation, it is inappropriate to compute a ‘naive’ CI, treating
the data as if they had been obtained in a fixed sample size experiment. They
estimated naive CI following a five-stage Pocock’s test with 5% level of signifi-
cance and found their coverage to vary between 84.6% and 92.9%, depending on
the true parameter value.

For the first scenario, Tsiatis et al. suggested a numerical method for calcu-
lating an exact Cls following group sequential tests with Pocock (1977) or
O’Brien and Fleming (1979) boundaries based on ordering the sample space in a
specific manner. They derived the CIs based on normal distribution theory, which
pull the naive Cls toward zero and are no longer symmetric about the sample
mean. They also commented that their method is applicable to any (asymptot-
ically) normal test statistic which has uncorrelated increments and for which the
variance can be estimated consistently. Whitehead (1986) suggested an approach
for adjusting the maximum likelihood estimate as the point estimate by sub-
tracting an estimate of the bias. Wang and Leung (1997) proposed a parametric
bootstrap method for finding a bias-adjusted estimate, whereas Emerson and
Fleming (1990) provide a formulation of uniformly minimum variance unbiased
estimator calculated by Rao—Blackwell technique.

For the second scenario, the multiple-looks problem affects the construction
of CIs just as it affects significance levels of hypothesis tests. Repeated Cls
for a parameter 0 are defined as a sequence of intervals i, k = 1, ..., K, for which
a simultaneous coverage probability is maintained at Some level, say, 1 —a.
The defining property of a (1—a)-level sequence of repeated Cls for 0 is
Ploel;forallk=1, ..., K]=1—oaforall§ (Jennison and Turnbull, 1983,
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1984, 1985). The interval I, k =1, ..., K, provides a statistical summary of the
information about the parameter 0 at the kth analysis, automatically adjusted to
compensate for repeated looks at the accumulating data. As a result, repeated Cls
instead of group sequential testing can be used for monitoring clinical trials
(Jennison and Turnbull, 1989).

Most conventional trials are designed to have a high probability of detecting
a predefined treatment effect if such an effect truly exists. That probability is
called the power of the trial. Most trials use power in the range of 0.8-0.95 for
a plausible range of alternatives of interest and the sample size of the study is
calculated to achieve that power. The concept of ‘conditional power’ comes into
play when supporting evidence is sought to decide the power midstream.

3.5 Stochastic curtailment

Once the trial starts and data become available, the probability that a treatment
effect will ultimately be detected can be recalculated (Halperin et al., 1982; Lan
et al., 1982; Lan and Wittes, 1988). An emerging trend in favor of the treatment
increases the probability that the trial will detect a beneficial effect, while an
unfavorable trend decreases the probability of establishing benefit. The term
‘conditional power’ is often used to describe this evolving probability. The term
‘power’ is used because it is the probability of claiming a treatment difference at
the end of the trial, but it is ‘conditional’ because it takes into consideration the
data already observed that will be part of the final analysis. Conditional power
can be calculated for a variety of scenarios including a positive beneficial trend, a
negative harmful trend, or no trend at all. However, these calculations are fre-
quently made when interim data are viewed to be unfavorable. For this scenario,
it represents the probability that the current unfavorable trend would improve
sufficiently to vyield statistically significant evidence of benefit by the scheduled
end of the trial. This probability is usually computed under the assumption that
the remainder of the data will be generated from a setting in which the true
treatment effect was as large as the originally hypothesized in the study protocol.

When an unfavorable trend is observed at the interim analysis, the conditional
probability of achieving a statistically significant beneficial effect is much less than
the initial power of the trial. If the conditional power is low for a wide range of
reasonable assumed treatment effect, including those originally assumed in the
protocol, this might suggest to the DSMC that there is little reason to continue
the trial since the treatment is highly unlikely to show benefit. Of course, this
conditional power calculation does increase the chance of missing a real benefit
(false-negative or type II error) since termination eliminates any chance of
recovery by the intervention. However, if the conditional power under these sce-
narios is less than 0.2 compared to the hypothesis for which the trial originally
provided power of 0.85-0.9, the increase in the rate of false-negative error 18
negligible. There is no concern with false-positive error in this situation since
there is no consideration of claiming a positive result. An example of its use will
follow in the Beta-Blocker Heart Attack Trial (BHAT) trial description later in
this chapter.
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3.6. Bayesian monitoring

The Bayesian approach for monitoring accumulating data considers unknown
parameters to be random and to follow probability distributions (Spiegelhalter
et al., 1986; Freedman et al., 1994; Parmar et al., 1994; Fayers et al., 1997). The
investigators specify a prior distribution(s) describing the uncertainty in the
treatment effect and other relevant parameters. These prior distributions are
developed based on previous data and beliefs. It is quantified through a distri-
bution of possible values and is referred to as the prior distribution. The observed
accumulating data are used to modify the prior distribution and produce a pos-
terior distribution, a distribution that reflects the most current information on the
treatment effect, taking into account the specified prior as well as the accumulated
data. This posterior distribution can then be used to compute a variety of
summaries including the predictive probability that the treatment is effective. In
1966, Cornfield introduced the idea of Bayesian approach to monitoring clinical
trial (Cornfield, 1966). Although, interest has recently increased in its use
(Kpozehouen et al., 2005) and availability of computational tools have made it
more feasible to use, these methods are still not widely utilized.

3.7. Available softwares

Softwares for implementing GSDs have been developed and commercialized since
the early 1990s. Extended descriptions of these softwares are available through
their user’s guide and some review papers (Emerson, 1996; Wassmer and
Vandemeulebroecke, 2006). Most of the computational tools employ the recur-
sive numerical integration technique that takes advantage of a quadrature rule
of replacing integral by a weighted sum for probabilistic computations (Armitage
et al., 1969; Jennison and Turnbull, 2000).

Here, we provide a comprehensive listing of appropriate links for free self-
executable softwares as well as codes written in FORTRAN, SAS, Splus, and R
languages. FORTRAN source code used in the textbook by Jennison and
Turnbull (2000) can be downloaded from Dr. Jennison’s homepage on http://
people.bath.ac.uk/mascj/book/programs/general. The code provides continua-
tion regions and exit probabilities for classical GSDs including those proposed
by Pocock (1977), O’Brien and Fleming (1979), Wang and Tsiatis (1987) and
Pampallona and Tsiatis (1994). In addition, the spending function approach
according to Lan and Demets (1983) is implemented. Another implementation in
FORTRAN of the spending function approach is available for use under
UNIX and MS-DOS. It can be downloaded from http://www.biostat. wisc.edu/
landemets/ as a stand-alone program with a graphical user interface, while details
of methodologies and algorithms are found in Reboussin et al. (2000). These
codes provide computation of boundaries and exit probabilities for any trial
based on normally or asymptotic normally distributed test statistics with inde-
pendent increments, including those in which patients give a single continuous
or binary response, survival studies, and certain longitudinal designs. Interim
analyses need not be equally spaced, and their number need not be specified in
advance via flexible alpha spending mechanism. In addition to boundaries, power
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computations, probabilities associated with a given set of boundaries, and CIs can
also be computed.

The IML (Interactive Matrix Language) module of SAS® features the calls
SEQ, SEQSCALE, and SEQSHIFT that perform computations for group
sequential tests. SEQ calculates the exit probabilities for a set of successive con-
tinuation intervals. SEQSCALE scales these continuation regions to achieve a
specified overall significance level and also returns the corresponding exit prob-
abilities. SEQSHIFT computes the non-centrality parameter for a given power.

S-PLUS that is commercially available provides a package for designing,
monitoring, and analyzing group sequential trials through its S+ SeqTrial™
module. It makes use of the unifying formulation by Kittelson et al. (Kittelson
and Emerson, 1999), including all classical GSDs, triangular tests (Whitehead,
1997), and the spending function approach. It offers the calculation of contin-
uation regions, exit probabilities, power, sample size distributions, overall
p-values and adjusted point estimates and CIs, for a variety of distributional
assumptions. It comes with a graphical user interface and very good documen-
tation, which can be downloaded from http://www.insightful.com/products/
seqtrial/default.asp.

In R (http://www.r-project.org/), cumulative exit probabilities of GSDs can be
computed by the function seqmon. It implements an algorithm proposed by
Schoenfeld (2001) and the documentation and packages are freely downloadable
at http://www.maths.lth.se/help/R/.R/library/seqmon/html/seqmon.html.

PEST, version 4 offers a wide range of scenarios, including binary, normal, and
survival endpoints, and different types of design. The main focus of PEST is the
implementation of triangular designs. Sequential designs from outside PEST can
also be entered and analyzed. Besides the planning tools, the software offers a
number of analysis tools including interim monitoring and adjusted p-values, Cls,
and point estimates for the final analysis. An important and unique feature of
PEST is that interim and final data can be optionally read from SAS data sets.
More information about the software can be found at http://www.rdg.ac.uk/mps/
mps_home/software/software htm#PEST %204.

Fast of Cytel Statistical Software and Services (http://www.cytel.com/
Products/East/) is the most comprehensive package for planning and analyzing
group sequential trials. The software provides a variety of capabilities of
advanced clinical trial design, simulation and monitoring, and comes with
extensive documentation including many real data examples. Tutorial sessions for
East are frequently offered during various statistical meetings and conferences
and educational settings. v _

“PASS 2005 Power Analysis and Sample Size” is distributed by NCSS Inc.
This software supplies the critical regions and the necessary sample sizes but it is
not yet possible to apply a sequential test to real data in the sense of performing
an adjusted analysis (point estimates, CIs, and p-values). Documentation and a
free download are available on http://www.ncss.com./passsequence.html,

“ADDPLAN Adaptive Designs-Plans and Analyses” (http://www.addplan.
com/) is designed for the purpose of planning and conducting a clinical trial based
on an adaptive group sequential test design. New adaptive (flexible) study designs
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allow for correct data-driven re-estimation of the sample size while controlling the
type I error rate. Redesigning the sample size in an interim analysis based on
the results observed so far considerably improves the power of the trial since the
best available information at hand is used for the sample size adjustment. The
simulation capabilities for specific adaptation rules are also provided.

The choice of software is based on the users’ need and the complexity of
design. The freely available softwares are often enough to implement basic func-
tions to be used in standard or popular designs and to perform associated data
analyses outlined in this chapter unless special features are required.

3.8. Data safety monitoring committee

Early in the development of modern clinical trial methodology, some investiga-
tors recognized that, despite the compelling ethical needs to monitor the accu-
mulating results, repeated review of interim data raised some problems. It was
recognized that knowledge of the pattern of the accumulating data on the part of
investigators, sponsors, or trial participants, could affect the course of the trial
and the validity of the results. For example, if investigators were aware that the
interim trial results were favoring one of the treatment groups, they might be
reluctant to continue to encourage adherence to all regimens in the trial, or to
continue to enter patients in the trial, or they may alter the types of patients they
would consider accrual. Furthermore, influenced by financial or scientific conflicts
of interest, investigators, or the sponsor might take actions that could diminish
the integrity and credibility of the trial. A natural and practical approach to
dealing with this problem is to assign sole responsibility for interim monitoring of
data on safety and efficacy to a committee whose members have no involvement
in the trial, no vested interest in the trial results, and sufficient understanding of
the trial design, conduct, and data-analytical issues to interpret interim analyses
with appropriate caution. These DSMCs consisting of members from variety of
background (clinical, statistical, ethical, etc.) have become critical components
of virtually all clinical trials.

For the above example, an independent DSMC consisting of three members
with background in oncology (one from community hospital and one from spe-
cialized center) and biostatistics met every year to discuss the progress of the trial.
The outcome comparison was only presented when an interim analysis with OBF
was allowed. Below we present a list of items that were included in the interim
report for this trial. This is a typical template for a clinical trial and could be
useful in other scenarios.

Items included in the interim report:

1. Brief outline of the study design

2. Major protocol amendments with dates (or summary) if applicable

3. Enrollment by arm and year and center (preferably, updated within a month
of the DSMC meeting date)

4. Information on eligibility criterion violation or crossover patients

5. Summary statistics (e.g., mean/median) on follow-up times of patients

6. Frequency tables of baseline characteristics (demographics, toxicity, and
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adverse event summary, laboratory test summary, precious treatment) of the
full cohort

7. Comparative analysis of primary and secondary endpoints (when data
mature)

8. Subgroup analyses and analyses adjusted for baseline characteristics (and
some secondary outcomes data, if any)

9. Comparative analysis of adverse event and toxicity data

10. Comparative analysis of longitudinal lab values.

The GCT study referred above struggled with accrual of patients and remained
open for 10 years instead of the four years planned initially. To improve accrual
rate, new centers were added and the patient eligibility was expanded. DSMC met
annually and approved these actions. The first DSMC meeting where outcome
data were compared was at 6th year after study start instead of the 2nd year.
Lan—Demets with OBF boundary was utilized to compute the appropriate
boundary but the boundary was not crossed. DSMC deliberations continued with
concern for the accrual rate but since the experimental regimen utilizing auto-
logus bone marrow transplant was quite a novel and unique approach and it was
added to the standard therapy, the DSMC did not feel any harm to patients and
decided to keep the trial open. More assertive accrual plans were adopted but
when many of these plans failed to improve accrual, the study was at last closed at
219 patients (in contrast, N = 270 in the original plan).

3.8.1. Details included in the final paper (on design and primary analysis)

The final write-up or summary report needs to include as much details as possible
about the original design (including sample size/power calculation), modifica-
tions, rationale for modification, decisions by DSMC, and conclusions. Here’s
part of the ‘Statistical Methods’ section from the final paper related to the GCT
study (Motzer et al., 2007):

The trial was designed with the proportion of patients with durable complete
response (DCR) at one year from entry onto the trial as the primary endpoint.
The original study population to be enrolled on this study was poor-risk GCT -
patients only. We had planned to accrue 200 patients (100 per arm) to detect a
20% difference in DCR rate at one year (an improvement from 30% to 50%)
with a 5% level of significance and 80% power. However, as the trial pro-
gressed, the accrual rate was far lower than our expectation of 50 poor-risk
patients per year. Also during this time, an international effort brought along a
newly developed but broadly accepted risk group classification and it was felt
that the intermediate-risk group patients with poor markers (lactate
dehydrogenase greater than 3 times upper limit of normal) would benefit from
the treatment under investigation. Therefore it was decided to extend the study
to this modified intermediate risk group from the poor risk classification
utilized before. Based on a historical one-year DCR rate of 45% in the poor
and intermediate risk groups combined, we then modified our target accrual to
218 patients to detect an improvement of 20% with the same level and power.
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A final modification to the study was implemented in 2002 after a new center
CALGB was added to the study and accrual at that center began. At that point,
it was our hope to be able to address the original question of interest in the
poor-risk group of patients. We planned to accrue 270 patients, consisting of
216 poor-risk patients (200 per original calculation +16 to account for with-
drawals) and 54 intermediate-risk patients. However, as accrual did not meet
our expectations even with the additional cooperative group participating, the
study was closed in August of 2003. The data were reviewed annually by an
independent DSMC. Initially, the design included an O’Brien and Fleming
stopping rule with the sequence of nominal significance levels of 0.001, 0.014,
and 0.036 for the two interim analyses and the final analysis, respectively. A
formal comparative interim analysis on DCR proportion and overall survival
was presented in May 2000 based on a recalculated boundary utilizing Lan—
Demets spending function. The decision was to continue the trial as the
boundary was not crossed and no ethical conflict was found since the exper-
imental regimen was an autologus bone marrow transplant regimen on top of
the standard therapy. The study was at last stopped in 2003 due to not being
able to improve accrual rate.

3.9. Historical example of GSD use

It is always educational to look back on the trials that were planned with GSD
and benefited from it. Two excellent books by DeMets et al., 2006 and Ellenberg
et al., 2006 provide essential and in-depth reading materials for clinical trialists
starting in this field. An example considered by these books and many other
publications is described below to show the multifaceted decision process that
goes into the deliberation of DSMB.

The BHAT compared the beta-blocker propranolol against placebo in patients
who had a myocardial infarction recently. The statistical design called for
enrollment of 4,020 patients, aged 3069 years, who had a myocardial infarction
5-21 days prior to randomization. The primary objective of the study was to
determine if long-term administration of propranolol would result in a difference
in all-cause mortality. The design utilized O’Brien—Fleming boundary with alpha
level set at two-tailed 0.05, 90% power, and three-year average follow-up. The
attempt was to detect a 21.25% relative change in mortality, from a three-year
rate of 17.46% in the control (placebo) group to 13.75% in the intervention
group, which were obtained from earlier studies (Furberg and Friedwald,
1978: Anderson et al., 1979) after taking non-adherence’ into account (Bymngton,
1984).

Enrollment began in 1978 and a total of 3,837 participants were accrued
instead of the planned 4,020. This reduced the power slightly from the planned
90% to 89%. The PDMB first reviewed the data in May 1979. Subsequent data
reviews were to occur approximately every six months, until the scheduled end of
the trial in June 1982. At the October, 1979 meeting of the PDMB, the log-rank
s-value exceeded the conventional 1.96 critical value for a nominal p of 0.05 but
was far from significance due to the conservative nature of the O’Brien—Fleming
boundaries early in the study. PDMB recommended continuation of the trial.
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At the meeting in April 1981, the PDMB reviewed not only the accumulating
BHAT data but the results of the timolol trial that had just been published. This
trial of 1,884 survivors of an acute myocardial infarction showed a statistically
significant reduction in all-cause mortality, from 16.2% to 10.4%, during a mean
follow-up of 17 months. At this point, BHAT was no longer enrolling patients,
but follow-up was continuing. The PDMB recommended that BHAT continues,
primarily because, despite the timolol findings, the BHAT data did not show
convincing evidence of benefit. Not only had the monitoring boundary not been
crossed, but the long-term effect on mortality and possible adverse events was
unknown. Importantly, all patients in BHAT had been in the trial for at least six
months post-infarction, and there was no evidence that beta-blockers started after
that time produced benefit. Thus, there was not an ethical concern about leaving
the participants on placebo. The PDMB advised that the study investigators be
informed of the timolol results. However, it also advised that because there had
been conflicting results from other beta-blocker trials, the positive results of the
timolol trial should not preclude the continuation of BHAT. Furthermore,
timolol was not available for sale in the United States then. At its October 1981
data review, the PDMB noted that the upper OBF boundary had been crossed.
The normalized log-rank statistic was then 2.82, which exceeded the boundary
value of 2.23. In addition to the monitoring boundaries, the PDMB considered a
number of factors in its recommendation to stop early:

1) Conditional power calculations indicated that there was little likelihood that
the conclusions of the study would be changed if follow-up were to continue;
2) The gain in precision of the estimated results for the first two years would be
tiny, and only modest for the third year; 3) The results were consistent with
those of another beta-blocker trial; 4) There would be potential medical benefits
to both study participants on placebo and to heart attack patients outside the
study; 5) Other characteristics, such as subgroup examinations and baseline
comparability, confirmed the validity of the findings; 6) The consent form
clearly called for the study to end when benefit was known. Following points in
favor of continuing until the scheduled end were considered but were not found
to weigh enough in favor of not stopping: 1) Even though slight, there remained
a chance that the conclusions could change; 2) Because therapy would be con-
tinued indefinitely, it would be important to obtain more long-term (4 year)
data; 3) It would be important to obtain more data on subgroups and second-
ary outcomes; 4) The results of a study that stopped early would not be as
persuasive to the medical community as would results from a fully powered
study that went to completion, particularly given the mixed results from
previous trials.

Lessons learnt from these experiences are that 1) O’Brien-Fleming approach to
sequential boundaries could prove very helpful in fostering a cautious attitude
with regard to claiming significance prematurely. Even though conventional
significance was seen early in the study, the use of sequential boundaries gave
the study added credibility and probably helped make it persuasive to the
practicing medical community; 2) The use of conditional power added to the
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persuasiveness of the results, by showing the extremely low likelihood that the
conclusions would change if the trial were to continue to its scheduled end; 3)
The decision-making process involves many factors, only some of which are
statistical (Friedman et al., 2003).

4. Steps for GSD design and analysis

4.1. Classical design

Step I: Decide the number of maximum looks (or groups) K and the choice of
boundary (that can be indexed by shape parameter, A (Wang and Tsiatis,
1987).

Remark:

a) The gain in ASN is most dramatic when going from K = 1 (i.e., the fixed
sample size design) to K = 2. Beyond K =5, there is relatively little
change in ASN.

b) The choice of K may be dictated by some practicality such as the fre-
quency of the DSMC meetings that is feasible.

¢) A =0 for OBF and A = 0.5 for Pocock.

Step 2: Compute the sample size for fixed design as you would ordinarily
do (using significance level, power, and effect size). Multiply by the appro-
priate IF.

Step 3: After computing the maximum sample size, divide it into K equal group
sizes and conduct interim analyses after each group. Reject Hy at the first
interim analysis where the test statistic using all the accumulated data
exceeds the boundary values computed. Alternatively, we can translate the
boundaries to the corresponding nominal p-values at each look and conduct
the test using p-values.

4.2. Informaiion-based design

Step 1: Specify level of significance, power, K and alternative of interest ().

Remark:

You specify K at the design stage but you may deviate from this at the time of
analysis.

Step 2: Choose a spending function and stopping boundary (Lan and DeMets
spending function with OBF or Pocock or other boundaries).

Step 3: Compute maximum information (MI) required to have a specific power
as MI = (z{_o/2 +21-p/y)° X IF.

Step 4: The first time the data are monitored, say, at time #;, compute the
proportion of information compared to MI. Then find the first boundary
value. If the test statistic exceeds the boundary computed, stop and reject
H,. If not, continue to next monitoring time.

Step 5: At time 1, compute the ratio of observed information and ML Then
perform the testing.
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Step 6: Continue in this fashion, if necessary, until the final analysis, at which
point you use up the remaining significance level.

Remark:

With this strategy, you are guaranteed a level alpha test regardless of how often
or when you look at the data prior to obtaining MI.

5, Discussion

In RCTs designed to assess the efficacy and safety of medical interventions,
evolving data are typically reviewed on a periodic basis during the conduct of the
study. These interim reviews are especially important in trials conducted in the
setting of diseases that are life-threatening or result in irreversible major mor-
bidity. Such reviews have many purposes. They may identify unacceptably slow
rates of accrual or high rates of ineligibility determined after randomization,
protocol violations that suggest that clarification of or changes to the study pro-
tocol are needed or unexpectedly high dropout rates that threaten the trial’s
ability to produce unbiased results. The most important purpose, however, is to
ensure that the trial remains appropriate and safe for the individuals who have
been or are still to be enrolled. Efficacy results must also be monitored to enable
benefit-to-risk assessments to be made. Repeated statistical testing of the primary
efficacy endpoint was seen to increase the chance of false-positive rate. The
methods of adjusting the significance levels at each interim analysis so that the
overall false-positive rate stays at an acceptable level gave rise to GSDs. The field
has been developing for past 30 years and is now quite mature with various
methods with well-studied operating characteristics and availability of an array
of user-friendly software.

One new field of applications has been cluster-randomized trials (CRTs). CRTs
have been used increasingly over the past two decades to measure the effects of
health interventions applied at the community level. Excellent reviews and books
are written by Donner et al. and Murray (Donner and Brown, 1990; Murray,
1998: Donner and Klar, 2000). Recently, Zou et al. (2005) developed group
sequential methods that can be applied to CRT. Although the design aspect is
well characterized and related computer program is available upon request, effect
estimation following this group sequential test remains a topic of future research.
This method is not yet used prospectively on a clinical trial. Development of
methodology for novel design such as the split-cluster design could also be a
useful addition to this field (Donner and Klar, 2004).

Adaptive designs in the context of group sequential testing allow modifications
of particular aspects of the trials (such as inappropriate assumptions, excessive
cost, or saving in time) after its initiation without undermining the validity
and integrity of the trial. Some developments have been made to.combine the
advantages of adaptive and of classical group sequential approaches. Although
research has been ongoing in this field, it still remains a field of research priority
(Tsiatis and Mehta, 2003; Jennison and Turnbull, 2005; Kuehn, 2006; Wassmer,
2000). . : : et
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There are some settings where GSDs may not be appropriate. For example,
when the endpoint assessment time is lengthy relative to the recruitment period,
there might be enough interim results to perform an analysis only after all or most
subjects have been recruited and treated, thereby potentially rendering the GSD
irrelevant. Most other large studies will benefit from having planned look at the
data as trial progresses. Quite surprisingly, we found that many large trials follow
FSD (Cooper et al., 2006; Cotton et al., 2006; Nicholls et al., 2006). A systematic
literature search to assess the percentage of studies that would benefit from GSD
but is not currently planning to use it would be interesting. This effort could also
identify additional areas for further research or need for expanded exposure of
these designs among practitioners.
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