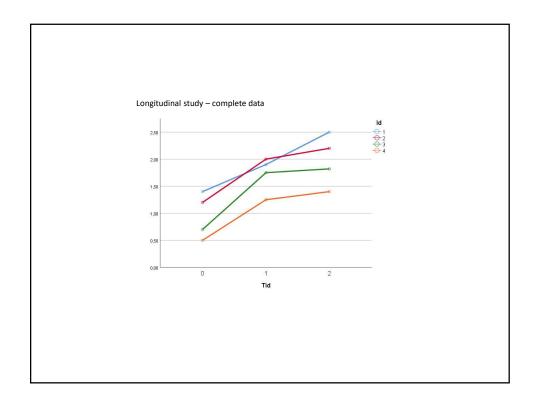
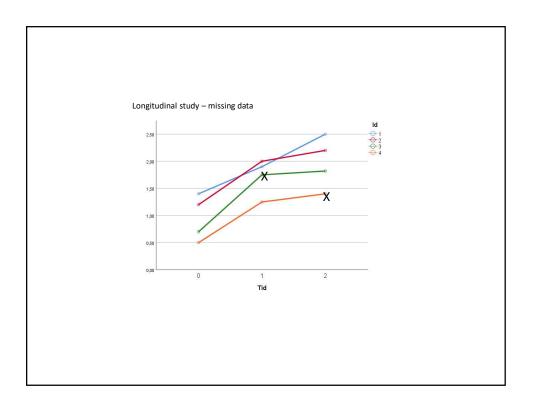
Mixed models

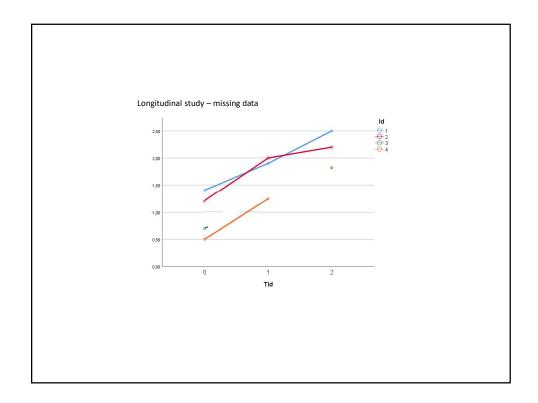
Stian Lydersen 21 November 2018

When?

- Relevant when analysing **repeated measures** within clusters, such as:
 - Students within classes
 - Repeated measures in the same patients
- Alternative analysis methods:
 - Repeated measures ANOVA
 - Mixed models
 - Generalized estimating equations (GEE)

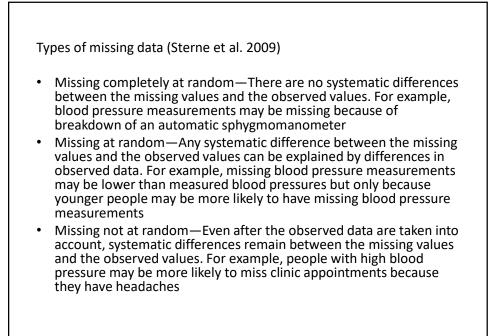


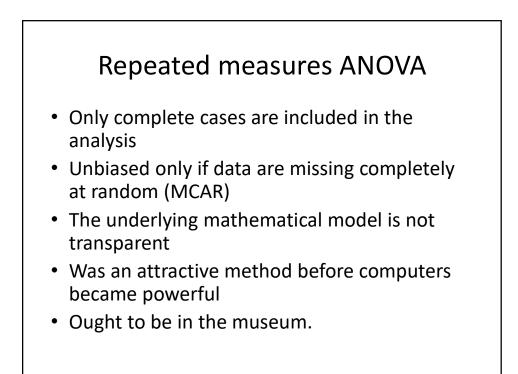


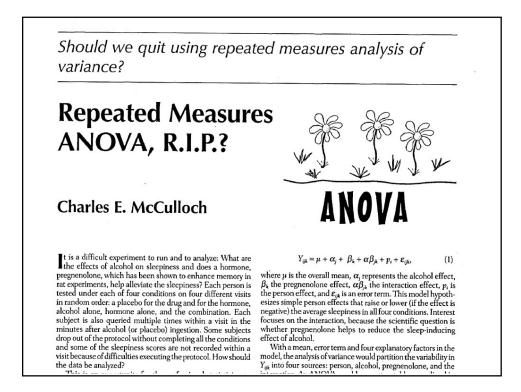


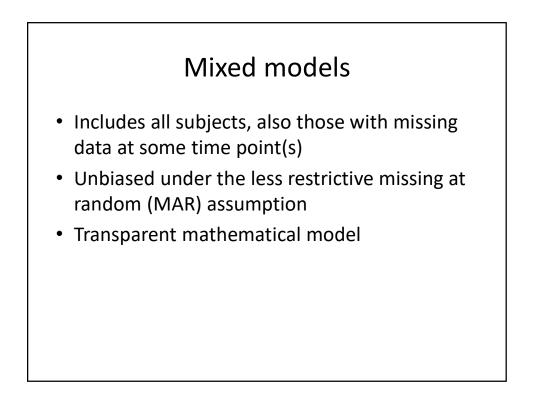
Types of missing data	The probability that a data
(Missing data mechanism)	value is missing
	(unobserved) can depend on
MCAR	Neither observed or
Missing Completely at Random	unobserved values
(Mangler helt tilfeldig)	
MAR	Only observed values
Missing at Random	
(Mangler betinget tilfeldig)	
MNAR	Unobserved values (and
Missing Not at Random	observed values)
(mangler ikke-tilfeldig)	

Norske betegnelser: Lydersen, S: «Manglende data – ikke helt tilfeldig». Akseptert i Tidsskrift for Den norske legeforening, 2019









Generalized estimating equations

- A useful alternative to Mixed models if the outcome is for example binary (logistic regression) or count (Poisson regression).
- Unbiased only if data are MCAR

Standard linear regression:

$$Y_{ij} = \beta_0 + \beta_1 x_{ij} + \varepsilon_{ij}$$

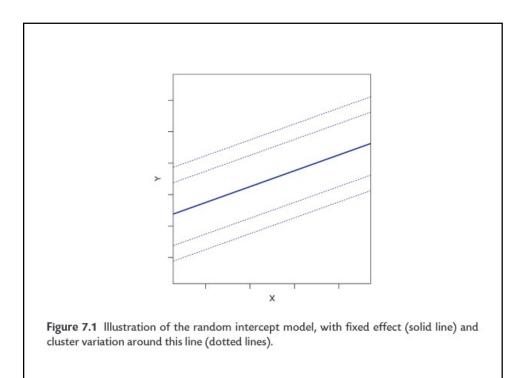
where subscript ij denotes observation j within cluster i , and $\varepsilon_{_{ij}}\sim N(0,\sigma_{_{\mathcal{E}}}^2)$.

The parameters β_0 and β_1 represent fixed effects.

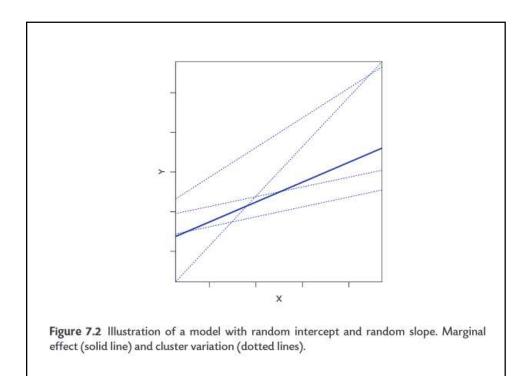
Random intercept model:

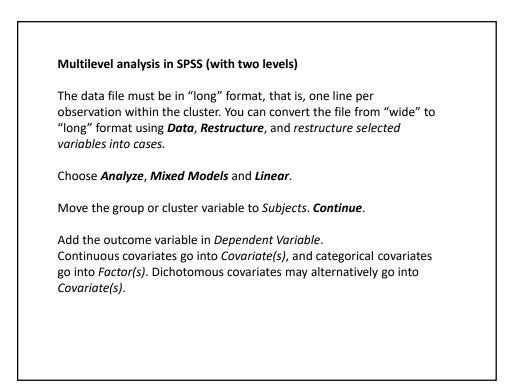
 $Y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + \varepsilon_{ij}$

where $b_{0i} \sim N(0, \sigma_{b_0}^2)$ is the random effect of cluster i.



Random intercept and random slope: $Y_{ij} = \beta_0 + \beta_1 x_{ij} + b_{0i} + b_{1i} x_{ij} + \varepsilon_{ij}$ where $b_{1i} \sim N(0, \sigma_{b_1}^2)$ represents the random slope for cluster i. Note 1: In (almost) every statistics package, the default is to assume the random effects $b_{0i}, b_{1i}(...)$ to be independent. This is completely unrealistic: Generally, their covariances are nonzero. So their variance-covariance matrix must be specified as unstructured. Note 2: Adding one or more random slopes causes a large increase in the number of parameters, and make estimation computationally very demanding or impossible.





Click *Fixed*. Put the middle button on *main Effects*. Move all variables from *Factors and Covariates* to *Model*. Then move the interactions, if any, into the *model*, after setting the middle button on *Interaction*.

After **Continue** click **Random**. In the lower part move the group or cluster variable to the right. In the upper part move to the right the variables (if any) for which you want a random slope. Important:

Mark *Include Intercept*, because otherwise, there will be no random intercept.

Covariance Type must be put on *Unstructured* (important if you included (at least) one random slope)

In order to get the regression coefficients, click on *Statistics* and *Parameter estimates*. After *Continue* and *OK* the analysis will be performed.

References
McCulloch, C.E. 2005. Repeated Measures ANOVA, R.I.P.? Chance, 18, (3) 29-33
Sterne, J.A., White, I.R., Carlin, J.B., Spratt, M., Royston, P., Kenward, M.G., Wood, A.M., & Carpenter, J.R. 2009. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. <i>BMJ</i> , 338, b2393
Thoresen, M. 2012, "Longitudinal Analysis," <i>In Medical statistics in clinical and epidemiological research</i> , M. Veierød, S. Lydersen, & P. Laake, eds., Oslo: Gyldendal Akademisk, pp. 259-287.
Thoresen, M. & Gjessing, H. K. 2012, "Mixed Models," <i>In Medical statistics in clinical and epidemiological research</i> , M. Veierød, S. Lydersen, & P. Laake, eds., Oslo: Gyldendal Akademisk, pp. 231-258.
Twisk, J.W.R. 2013. <i>Applied longitudinal data analysis for epidemiology a practical guide</i> , 2nd ed.