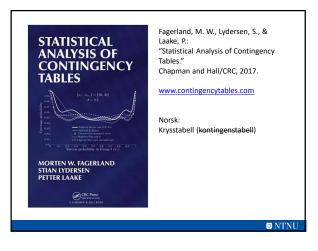
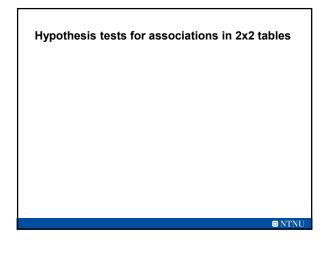
Analysis of 2x2 contingency tables: Hypothesis tests and confidence intervals


Different versions of the Pearson chi squared tests, the Fisher exact test, and Wald confidence intervals are widely used for contingency tables. Unfortunately, some of these methods are also commonly used in situations when they perform poorly, and better alternatives exist. I will present recommended methods for 2x2 tables in different situations.


Stian Lydersen 18 January 2018 and 29 January 2018 Revised 29 January 2018 http://folk.ntnu.no/slyderse/medstat/Pres18jan2018.pdf

• NTNU

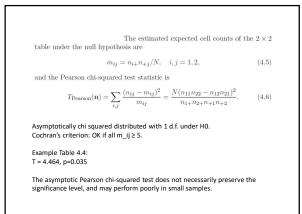
Norwegian University of Science and Technology

taste test	Gues	ssed	
Poured	Milk first	Tea first	Tota
Milk first	3	1	4*
Tea first	1	3	4*
Total	4*	4*	8*

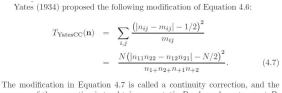
TABLE 4.3

Treatment of epinephrine in children with cardiac arrest (Perondi et al., 2004)

	Surviva	1 at 24h	
Treatment	Yes	No	Total
Standard dose High dose	$\begin{array}{c} 7 \ (21\%) \\ 1 \ (2.9\%) \end{array}$	$\begin{array}{c} 27 \ (79\%) \\ 33 \ (97\%) \end{array}$	34^{*} 34^{*}
Total	8 (12%)	60 (88%)	68*

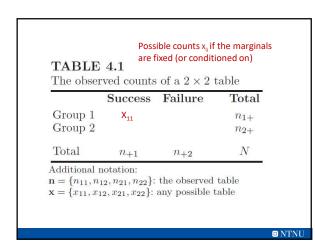

*Fixed by design

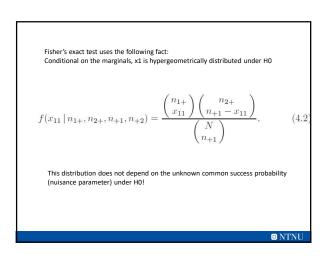
The number of successes n_{i1} in row number i is assumed $\text{bin}(n_{i^{+}}\,,\,\pi_{i})$

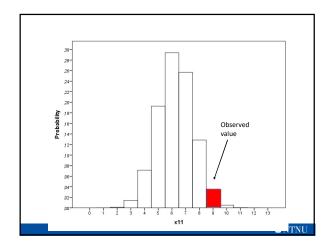

🖸 NTNU

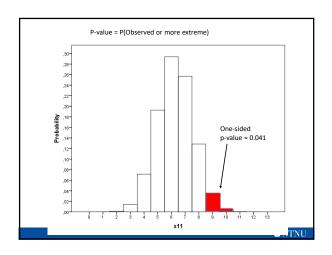
		for children wi ndromes (Lamp	
	Cases	s/controls	
GADA	IPEX	IPEX-like	Total
		74 -4 (29%)	13~(48%)
Negatio.74	4 4 (31%).	26 10 (71%)	14 (52%)
Total	13^{*}	14*	27*

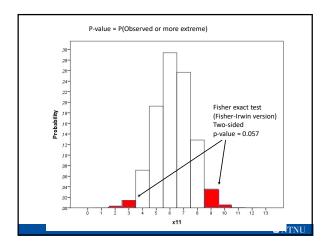
	Success	Failure	Total
Group 1	n_{11}	n_{12}	n_{1+}
Froup 2	n_{21}	n_{22}	n_{2+}
Fotal	$n_{\pm 1}$	$n_{\pm 2}$	N

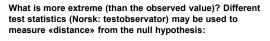

🗆 NTNU

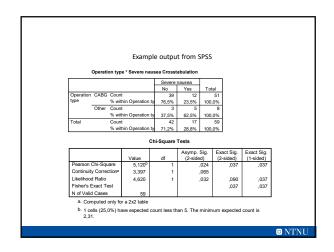


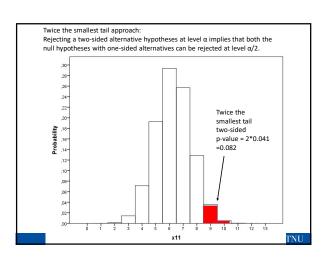

NTNU

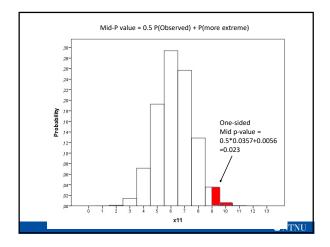

purpose of the correction is to obtain asymptotic *P*-values closer to exact *P*-values. The use of Yates's continuity correction—and other continuity corrections suggested in the literature—has been widely debated; see, for instance, the historical review in Hitchcock (2009). Many now consider such corrections to be no more than "interesting historic curiosities" (Hirji, 2006, p. 149).

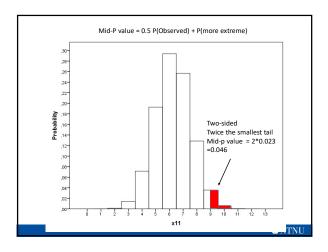

Example Table 4.4: T Yates CC = 2.984, p=0.084








- Use the conditional point probability as in the Fisher-Irwin version of the Fisher exact test
- The Pearson chi squared statistic
- Etc
- In a one-sided test in a 2x2 table, the choice of (monotonely increasing) statistics does not matter.
- Also the case for twice the smallest tail two sided tests
 The choice of statistic matters for other two sided tests in 2x2


🖸 NTNU

tables, and for rxc tables with r>2 or c>2.
In 2x2 tables, the conditional probability (Fisher) and the Pearson statistics generally perform well.

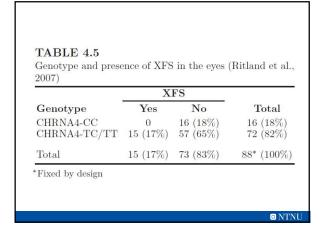
Mid-p tests and Mid p confidence intervals:

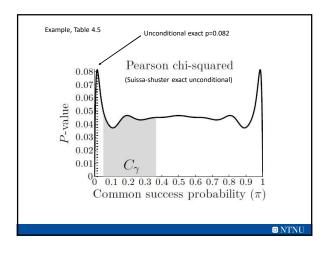
- Solid theoretical justifications (Fagerland, Lydersen, Laake, 2017, page 28-29, and references therein)
- Reduces the conservatism of exact methods
- Do not preserve nominal significance level (tests) and nominal coverage (confidence intervals), but the violations are usually not serious
- not serious An ideal p-value is U(0,1) under H0. Exact p-values for categorical data are right skewed. Mid-p values have expectation 0.5 and is approximately U(0,1) In most cases the mid-p approach gives methods with better properties than those based on asymptotic normal theory. A notable exception is testing for equality of paired binomial distributions, where the McNemar asymptotic test is better than the McNemar mid-P test (Fagerland, Lydersen, Laake, 2017, page 29)

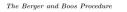
NTNU

4.4.7 Exact Unconditional Tests

The probability of observing an arbitrary table ${\bf x}$ under H_0 is then given by Equation 4.3 with $\pi = \pi_1 = \pi_2$, which we rewrite slightly to

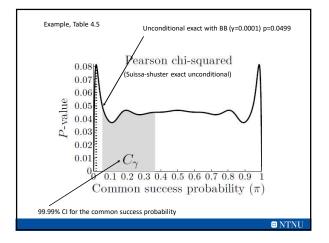

$$f(\mathbf{x} \mid \pi, \mathbf{n}_{+}) = \binom{n_{1+}}{x_{11}} \binom{n_{2+}}{x_{21}} \pi^{x_{11}+x_{21}} (1-\pi)^{N-x_{11}-x_{21}},$$

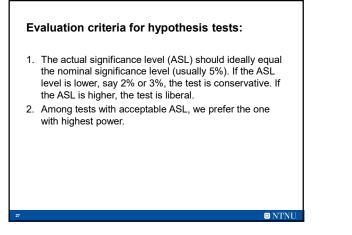

where $\mathbf{n}_{+} = \{n_{1+}, n_{2+}\}$ denotes the fixed row sums. An explicit expression for the exact unconditional *P*-value is

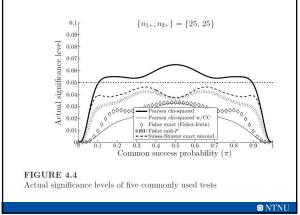

$$P-\text{value} = \max_{0 \le \pi \le 1} \left\{ \sum_{\Omega(\mathbf{x}|n_{+})} I[T(\mathbf{x}) \ge T(\mathbf{n})] \cdot f(\mathbf{x} \mid \pi, \mathbf{n}_{+}) \right\}, \quad (4.14)$$

NTNU

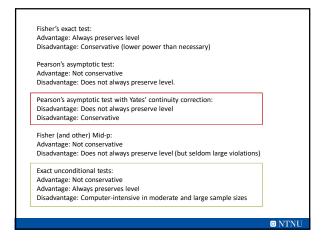
where $\Omega(\mathbf{x}|\mathbf{n}_+)$ denotes the set of all tables with row sums equal to \mathbf{n}_+ .






The Bogler and boost investigation over the entire nuisance parameter space, $0 \le \pi \le 1$, is unreasonable because the interval contains values that are highly unlikely in light of the observed data. This argument was the crux of Fisher's criticism (Fisher, 1945) of Barnard's proposition of the exact unconditional test. The Berger and Boos procedure is a remedy (Berger and Boos, 1994). It restricts the nuisance parameter space to $C_{\gamma} : a 100(1 - \gamma)\%$ exact confidence interval for π , where γ is taken to be very small. To make sure that the actual significance level is bounded by the nominal level, the value of γ is added to the *P*-value:

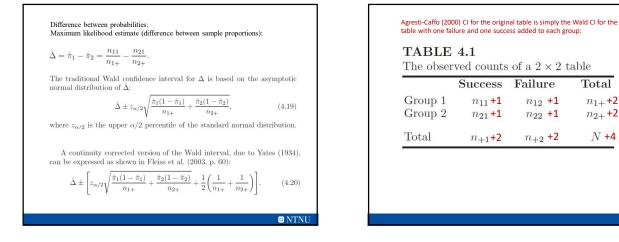
 $P\text{-value} = \max_{\pi \in C_{\gamma}} \left\{ \sum_{\Omega(\mathbf{x}|\mathbf{n}_{+})} I\big[T(\mathbf{x}) \geq T(\mathbf{n})\big] \cdot f(\mathbf{x} \,|\, \pi, \mathbf{n}_{+}) \right\} + \gamma.$


For the Suissa-Shnster exact unconditional test, Lydersen et al. (2012b) found $\gamma = 0.0001$ to be approximately optimal under rather general conditions. In addition to avoiding computation over unrealistic values of the misance parameter, Berger (1996) states two other advantages of using the Berger and Boos procedure: (1) maximization over C_{γ} is computationally easier than over $0 \le \pi \le 1$; and (ii) the resulting test can have higher power than the ordinary exact unconditional test. The user manual of the software package StatXact also notes that using the Berger and Boos procedure provides greater computational stability (StatXact 11, 2015, p. 528). A common method to form the confidence interval C_{γ} is to use the Clopper-Pearson exact interval (see Section 2.4.7).

Exact unconditional tests are available in

- StatXact (Cytel software)
- R package «Exact»
- http://www4.stat.ncsu.edu/~boos/exact/
- ...

$\leftarrow \rightarrow \mathbf{C}$	Not secure	www4.stat.ncsu.ed	u/~boos/exact/				*
Hoo	pla 🕻 Web	of Science [v.5.2 ④	Medisin og tall Tids:	Statistical Analysis of	R Exact.pdf	R exact2x2.pdf	30
	1	xact Uncondition:	al Homogeneity/I	ndependence Tests for	2X2 Tables		
This performs ex	ict, uncondi	tional tests of home	ogeneity (binomial	l model) or independen	e (multinomial	model) for 2X2 t	tables.
	ually unifor	mly more powerfi	ul than Fisher's e	xact test. See reference	s below.		
Cell Counts:							
1 33	Subr	it Reset					
7 27							
\sim							
			_				
		the row totals are th	he fixed binomial s	sample sizes.			
Model: For binor binomial			he fixed binomial s	sample sizes.			
🖲 binomial 🔘	multinomia		he fixed binomial s	sample sizes.			
 binomial Hypothesis: The Ho: odds ratio 	one-sided h			sample sizes.			
 binomial Hypothesis: The 	one-sided h	vpotheses are		sample sizes.			
 binomial Hypothesis: The Ho: odds ratio 	one-sided h	vpotheses are		sample sizes.			
 binomial Hypothesis: The Ho: odds ratio one-sided Test Statistic: 	multinomia one-sided h 1 vs Ha o two-sided	ypotheses are ds ratio < 1 <u>more e</u>	xplanation	sample sizes.			
 binomial Hypothesis: The Ho: odds ratio one-sided 	multinomia one-sided h 1 vs Ha o two-sided	ypotheses are ds ratio < 1 <u>more e</u>		sample sizes.			
 binomial Hypothesis: The Ho: odds ratio one-sided Test Statistic: Fisher's Exact 	nultinomia one-sided h I vs Ha two-sided Boschlog	vpotheses are ds ratio < 1 more e	xplanation	sample sizes.			
 binomial Hypothesis: The Ho: odds ratio one-sided Test Statistic: Fisher's Exac Confidence Inte 	nultinomia one-sided h I vs Ha two-sided Boschlog	vpotheses are ds ratio < 1 more e	xplanation	sample sizes.			
 binomial Hypothesis: The Ho: odds ratio one-sided Test Statistic: Fisher's Exact 	nultinomia one-sided h I vs Ha two-sided Boschlog	vpotheses are ds ratio < 1 more e	xplanation	sample sizes.			
 binomial Hypothesis: The Ho: odds ratio one-sided Test Statistic: Fisher's Exac Confidence Inte 	multinomia one-sided h 1 vs Ha of two-sided -Boschloo val Metho	vpotheses are ds ratio < 1 more e	xplanation	sample sizes.			


		tat.ncsu.edu/cgi/b	erger-01.pl									\$	
🔛 Apps 📌 H	loopla 🗘	Web of Science [v.5.	() Medisi	n o <mark>g ta</mark> l	Tids		Statistical Anal	sis of	R Exact.pdf	R	exacti	2x2.pdf	*
			Exact Un	condi	tion	al T	est Output						
Model: BINO Hypothesis: T Test statistic:	WO-SIDI	ED - SIGNED CHI SO	QUARE - SC	ORE	TEST	r"							
The Input T	able												
					33	34							
				-									
				7	27	34							
						20							
				8	60	68							
99.9900% con: confidence inte		terval used. ommon p: (0.019)	s <mark>, 0.3303</mark>)	8	60	68							
confidence inte	erval for c		a (8)	8	60	68							

🛛 NTNU

Analysis	Recommended methods	Sample sizes
Tests for association	Fisher mid- P^*	all
	Suissa-Shuster exact unconditional [†] Fisher-Boschloo exact uncond. [†] Pearson chi-squared [*]	small/medium small/medium large
*These methods have c		9
[†] Preferably with the Be	erger and Boos procedure ($\gamma = 0.0001$)	

Confidence intervals in 2x2 tables	
© NT?	NU

Effect measures in 2x2 tables,	
comparing two binomial probabilities $\pi_{\rm 1}$ and $\pi_{\rm 2}$:	
Probabillity difference	
(risk difference, absolute risk reduction, attributable risk)	
$\Delta=\pi_1-\pi_2$	
Ratio of probabilities (risk ratio, relative risk)	
$\phi=\pi_1 \ / \ \pi_2$	
Odds ratio	
$\theta = \frac{\pi_1 / (1 - \pi_1)}{\pi_2 / (1 - \pi_2)}$	
	🖸 NTNU

O NTNI

Agresti and Caffo (2000) proposed a simple, yet effective procedure for computing a confidence interval: add one success and one failure (pseudofrequencies, see Section 2.4.4) in each sample and calculate the Wald confidence interval on the resulting data:

$$\tilde{\pi}_1 - \tilde{\pi}_2 \pm z_{\alpha/2} \sqrt{\frac{\tilde{\pi}_1 (1 - \tilde{\pi}_1)}{\tilde{n}_{1+}} + \frac{\tilde{\pi}_2 (1 - \tilde{\pi}_2)}{\tilde{n}_{2+}}},$$
(4.21)

where

 $\tilde{n}_{1+} = n_{1+} + 2, \ \tilde{n}_{2+} = n_{2+} + 2, \ \tilde{\pi}_1 = (n_{11} + 1)/\tilde{n}_{1+}, \ \tilde{\pi}_2 = (n_{21} + 1)/\tilde{n}_{2+}.$

New combe (1998b) proposed a confidence interval for Δ formed as a combination of the Wilson score (Section 2.4.3) confidence limits for π_1 and the Wilson score confidence limits for π_2 . Denote the interval for π_1 by (l_1, u_1) and the interval for π_2 by (l_2, u_2) . The Newcombe hybrid score confidence interval (L, U) for Δ is given by

$$L = \hat{\Delta} - \sqrt{\left(\hat{\pi}_1 - l_1\right)^2 + \left(u_2 - \hat{\pi}_2\right)^2}$$
(4.22)

$$= \hat{\Delta} + \sqrt{\left(\hat{\pi}_2 - l_2\right)^2 + \left(u_1 - \hat{\pi}_1\right)^2}.$$
(4.23)

Total

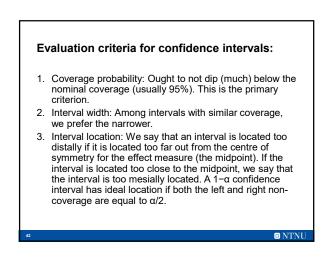
n₁₊+2

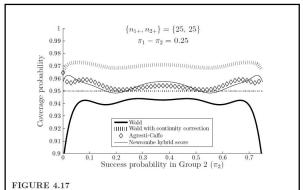
n₂₊+2

N **+4**

NTNI

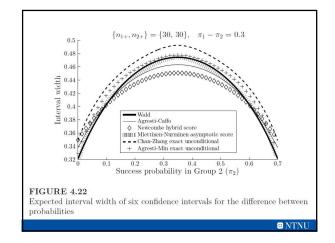
Wilson score CI:

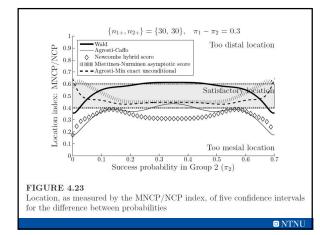

U

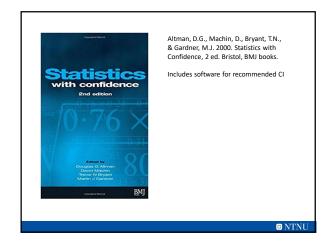

and

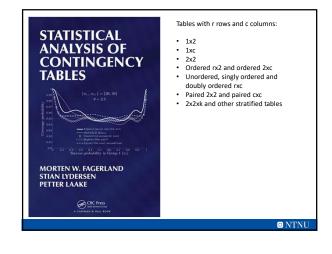
$$\frac{2n\hat{\pi} + z_{\alpha/2}^2 \pm z_{\alpha/2} \sqrt{z_{\alpha/2}^2 + 4n\hat{\pi}(1 - \hat{\pi})}}{2\left(n + z_{\alpha/2}^2\right)}.$$

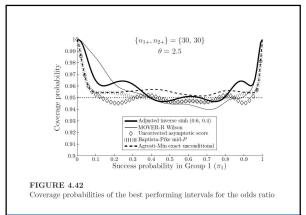
O NTNI

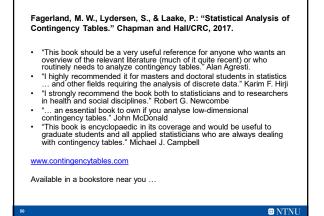

Example, two bi Treatment of chi (Perondi et al, N	ldren with o		t.	
Epinephrine	survival a	t 24 hours		
treatment	yes	no	Total	
High dose	1	33	34	
Standard dose	7	27	34	
total	8	60	68	
Fisher's exact te Exact z-pooled (S		*	litional test:	p=0.02
Estimated probab 95% CI: Wald: -0 Agresti-Caffo: -0. Newcombe hybrid	.324 to -0.0 .322 to -0.0	29 12		
				🖸 N'




Coverage probabilities of four confidence intervals of closed-form expression for the difference between probabilities


 Image: Coverage probabilities




Suissa-Shust Fisher-Box Pears CIs for difference Agresti-Min between probabilities A	sher mid-P* er exact unconditional [†] schloo exact uncond. [†] son chi-squared*	all small/medium small/medium large	
CIs for difference between probabilities CIs for difference Agresti-Min	chloo exact uncond. [†] on chi-squared [*]	small/medium	
Pears CIs for difference Agresti-Min between probabilities A	on chi-squared [*]		
CIs for difference Agresti-Min between probabilities A		large	
between probabilities A	1		
	i exact unconditional [†]	small/medium	
Newcou	gresti-Caffo [*]	medium/large	
	nbe hybrid score*	medium/large	
Miettinen-N	urminen asympt. score	medium/large	
	Wald*	large	
	cals of the limits of the		
needed to treat intervals for	r the difference between	probabilities	
	ted inverse sinh [*]	all	
	/ER-R Wilson*	all	
	n asymptotic score	all	
Agresti-Mir	i exact unconditional [†]	small/medium	
	Katz log [*]	large	
CIs for odds ratio Adjus	ted inverse sinh [*]	all	
	/ER-R Wilson [*]	all	
	ista-Pike mid-P	all	
	i exact unconditional [†]	small/medium	
	Voolf logit [*]	large	
These methods have closed-form expre Preferably with the Berger and Boos p			

O NTNU

