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studied and where attention very often focuses on the main effects and low-order
interactions.

A further way in which a full factorial design can be reduced, in a block
experiment, is to arrange that each block contains only a selection of the possible
factor combinations. The design is chosen to ensure that some effects, typically
main effects and low-order interactions, can be estimated from contrasts within
blocks, whereas others (of less interest) are estimated from contrasts between
blocks. The latter are said to be confounded with blocks, and are, of course,
estimated with lower precision than the unconfounded effects.

9.6 Split-unit designs

In a factorial design in which confounding with blocks takes place, as
outlined at the end of §9.5, two types of random variation are important:
the variation between experimental units within a block, and that between
blocks. In some simple factorial designs it is convenient to recognize two
such forms of experimental unit, one of which is a subdivision of the other,
and to arrange that the levels of some factors are spread across the larger units,
while levels of other factors are spread across the smaller units within the larger
ones.

This principle was first exploited in agricultural experiments, where the
designs are called split-plot designs. In some field experiments it is convenient
to divide the field into ‘main plots’ and to compare the levels of one factor—say,
the addition of different soil organisms—Dby allocating them at random to the
main plots. At the same time each main plot is divided into a number of
‘subplots’, and the levels of some other factor—say, different fertilizers-—are
allocated at random to subplots within a main plot, exactly as in a randomized
block experiment. The comparison of fertilizers would be subject to the random
variation between subplots, which would be likely to be less than the variation
between main plots, which affects organism comparisons. The organisms are
thus compared less precisely than the fertilizers. This inequality of precision is
likely to be accepted because of the convenience of being able to spread organ-
isms over relatively large areas of ground.

Similar situations arise in medical and other types of biological experimenta-
tion. In general the experimental units are not referred to as ‘plots’, and the
design is therefore more appropriately called a split-unit design. Another term is
nested design. If the subunits are serial measurements on the main units then a
split-unit analysis is sometimes called a repeated measures analysis of vari-
ance: for a discussion of some special considerations that apply in this case, see
§12.6.

Some examples of the distinction between main units and subunits are as
follows:
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Main unit Subunit

Individual human subject or Different occasions with the same
animal subject or animal

Litter Animals within a litter

Day Periods during a day

In the first of these instances a split-unit design might be employed to compare
the long-term effects of drugs A;, A, and A3, and simultaneously the short-term
effects of drugs B;, B, and B;. Suppose there are 12 subjects, each of whom must
receive one of Aj, Ay and Aj; and each subject is observed for three periods
during which B, B, and Bj; are to be given in a random order. The design,
determine by randomly allocating the As to the different subjects and the Bs to
the period within subjects, might be as follows.

Patient ‘A’ drug ‘B’ drug during period
throughout ) ;
1 As By B; B,
2 Ay B, B, B,
3 Al Bs3 B B,
4 Ay B, B, B,
5 As B, B, B,
° Az B, By B;
7 A) H[ Bz Bg
8 As B, B, B,
9 As B1 B, B,
0 Az B, By B
! A B, B B;
. Az By By B3

The analysis of such designs is illustrated in Example 9.5, using data from a
survey rather than an experiment.

Example 9.5

The data in Table 9.10 are taken from a survey on the prevalence of upper respiratory
tract infection. The variable to be analysed is the number of swabs positive for Preuno-
coccus during a certain period. Observations were made on 18 families, each consisting of
a father, a mother and three children, the youngest of whom was always a preschool child.
The children are numbered 1, 2 and 3 in descending order of age. Six families were a
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random selection of such families living in ‘overcrowded’ conditions, six were in ‘crowded’
conditions and six were in ‘uncrowded’ conditions.

The first point to notice is that two types of random variation are relevant: that
between families (the main units in this example) and that between people within families
(the subunits). Comparisons between degrees of crowding must be made benween families,
comparisons of family status are made within families. With designs of any complexity it is
a good idea to start the analysis by subdividing the degrees of freedom. The result is
shown in the DF column of Table 9.11. The total DF are 89, since there are 90 observa-
tions. These are split (as in a one-way analysis of variance) into 17 (= 18 — 1) between
families and 72 (= 18 x 4) within families. The between-families DF are split (again as in
a one-way analysis) into 2 (= 3 — 1) for degrees of crowding and 15 (= 3 x 5) for residual
variation within crowding categories. The within-families DF are splitinto 4 (=5 — 1) for

Table 9.10 Numbers of swabs positive for Preumococcus during fixed periods.

Family status

Family Child
Crowding serial
category number Father Mother 1 2 3 Total
Overcrowded 1 5 7 6 25 19 62
2 11 8 11 33 35 98
3 3 12 19 6 21 61
4 19 12 17 17 68
5 [0 9 15 [§! 17 62
6 9 0 6 9 5 29
41 55 69 101 114 380
Crowded 7 11 7 7 15 13 53
3 10 5 8 13 17 53
5 4 3 18 10 40
10 1 9 4 16 8 38
11 5 5 10 16 20 56
12 7 3 13 17 18 58
39 33 45 95 86 298
Unecrowded 13 6 3 5 7 3 24
14 9 6 6 14 10 45
15 2 2 6 15 8 33
16 0 2 10 16 21 49
17 3 2 0 3 14 22
18 6 2 4 7 20
26 17 31 62 76 212

Total 106 105 145 258 276 890
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categories of family status, 8 (= 4 x 2) for the interaction between the two main effects,
and 60 for within-families residual variation. The latter number can be obtained by
subtraction (60 = 72 — 4 — 8) or by regarding this source of variation as an interaction
between the between-families residual variation and the status factor (60 =15 x 4). It
may be wondered why the interaction between status and crowding is designated as within
families when one main effect is between and the other is within families. The reason is
that this interaction measures the extent to which the status differences, which are within
families, vary from one degree of crowding to another; it is therefore based entirely on
within-families contrasts.

Table 9.11 Analysis of variance for data in Table 9.10.

VR against:
SSq DF MSq a b
Between families 1146-09 17
Crowding 470-49 2 235-24 5.22%
Residual 675-60 15 45.045 178 1.00
Within families 3122-80 72
Status 1533-67 4 383.42  15-17%*
Status x crowding 72-40 8 9-05 0-36
Residual 1516-73 60 25-28*  1-00
Total 426889 89
#P = 0-019.
P < 0-001.
The calculation of sums of squares follows familiar lines. Thus,
Correction Term CT = (890)? /90 = 880111
Total §Sq = 52 + 72+ ...+ 20> ~ CT = 426889
Between-Families SSq = (627 +... +39%)/5 — CT = 1146-09

Within-Families SSq = Total SSq — Between Families SSq = 3122.80

Subdividing the Between-Families SSq,

Crowding $Sq = (3807 -+ 298 4-212%)/30 — CT = 470-49

Residual = Between-Families SSg — Crowding SSq = 675-60
Subdividing the Within-Families SSq,

Status $Sq = (106> + ... +276")/18 — CT = 1533-67

S x C SSq = (41> +...+76%)/6 — CT~ Status SSq —
Crowding SSq = 7240
Residual = Within-Families SSq — Status SSq — S xC S8q 151673

il

The variance ratios against the Within-Families Residual MSq show that differences
due to status are highly significant: we return to these below. The interaction is not
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significant; there is therefore no evidence that the relative effects of family status vary
from one crowding group to another. The variance ratio of 1.78 between the two residuals
is just on the borderline of significance at the 5% level. But we should expect a priori that
the between-families residual variance would be greater than that within families, and we
must certainly test the main effect for crowding against the between-families residual. The
variance ratio, 5-22, is significant.

The means for the different members of the family are:

Child
M 1 2 3
56 58 81 143 153

The standard error of the difference between two means is 1/[2(25-28)/18] = 1-68. There
are clearly no significant differences between the father, mother and eldest child, but the
two youngest children have significantly higher means than the other members of the

family.
The means for the different levels of crowding are:
Overcrowded Crowded Uncrowded
127 9:9 7-1

The standard error of the difference between two means is now /[2(45-04)/30] = 1.73.
There is some evidence of a difference between overcrowded and uncrowded families.
However, there seems to be a trend and it might be useful to divide the two degrees of
freedom for crowding into one for a linear trend and one for the remaining variation (see
§8.4).

Split-unit designs more elaborate than the design described above may be
useful. For example, the structure imposed on the main units (which in
Example 9.5 was a simple one-way classification) could be a randomized block
design or something more complex. The subunit section of the analysis would
then be correspondingly enlarged by isolation of the appropriate interactions.
Similarly, the subunit structure could be elaborated. Another direction of
generalization is in the provision of more than two levels in the hierarchy of
nested units. In a study similar to that of Example 9.5, for instance, there
might have been several periods of observation for each individual, during which
different treatments were administered. There would then be a third section in
the analysis, within individuals, with its corresponding residual mean square.

The split-unit design, with its two levels of residual variation, can be regarded
as the prototype for multilevel models, a flexible and widely used class of models
which will be discussed in §12.5.

The following example illustrates a case in which there are two levels of
nested units, but in which the design is very simple. There are no structural
factors, the purpose of the analysis being merely to estimate the components of
random variation.
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To be fair to methods which apply transformations directly to data from studies of
Michaelis—-Menten kinetics, there are several different linearizing transformations, most of
which are superior to the Lineweaver-Burk method. One of the best of these is obtained
by noting that (12.27) can be written as:

s K N 1 s
Vo Viax Vnax ’

so a linear regression of the ratios s/v against s has slope 1/ Vinax and intercept K/ Vipax. An
extended discussion of several methods for analysing data from Michaelis—-Menten studies
can be found in Cornish-Bowden (1995a, b).

In some cases linearization techniques effect a valuable simplification without
causing any new problems. An example of this is periodic regression, where the
response exhibits a cyclic or seasonal nature. A model which comes to mind
would be

E(yjx) = ag + a; sin(Bx + ). (12.32)

While a cyclic trend cannot always be captured by a simple sinusoidal curve,
it can be a useful alternative to a null hypothesis that no cyclical trend exists; a
fuller discussion is given by Bliss (1958). An example of the use of this model is
given by Edwards (1961), who tested a series of counts made at equally spaced
intervals for periodicity. Suppose there are k counts, ;. For example, neurolo-
gical episodes may be classified by the hour of the day (k = 24), or congenital
abnormalities by the month of the year (k = 12).

In (12.32) o is the mean level about which the N; fluctuate, o is the amplitude
of the variation, 3 determines the period of the variation and -y is the phase. If the
equation (12.32) is to have a complete cycle of k time intervals then § = 360/k
(degrees). Even though this deals with one non-linear parameter, the resulting
equation is still non-linear because y does not appear linearly. However, expand-
ing the sine function gives the alternative formula

E(ylx) = a0 + {;sin(Bx) + Lpcos(Bx),

where {; = o cosy and {, = a; siny. This equation is linear in these parameters
and the regression can be fitted by recalling that 8 is known and noting that x
successively takes the values 1,2, ..., k.

12.5 Multilevel models

In the models discussed so far in this chapter the primary concern has been to
allow the mean of the distribution of an outcome, y, to be described in terms of
covariates x. A secondary matter, which has been alluded to in §12.3 but not
discussed in detail, is the modelling of the variance of y in terms of covariates. In
all cases it is assumed that separate observations are quite independent of one
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another. The distributions of different ys may be similar because the correspond-
ing xs are similar, but knowledge of one of the ys will provide no further
information about the value of the others.

However, many circumstances encountered in medical research give rise to
data in which this level of independence does not obtain and a valid analysis
requires richer models than those considered hitherto. For example, it is quite
reasonable to assume that observations on the blood pressure of different
patients are independent, but it may well be quite unreasonable to make the
same assumption about measurements made on the same patient. This could be
because the patient may have a familial tendency to hypertension and so usually
has a high blood pressure. Consequently the value on one occasion will give
information about subsequent observations. To analyse a series of such observa-
tions as if they were independent would lead to bias: e.g. the serial dependence
would give rise to an inappropriately small estimate of variance. Another ex-
ample would be the level of glycaemic control amongst patients with Type II
diabetes attending a particular general practice. All patients with this disease in
the practice will receive advice on managing their condition from a practice nurse
or one of the doctors—that is, the patients share a common source for their
advice. If the advisers are particularly good, or particularly bad, then all patients
in the practice will tend to benefit or suffer as a consequence.

In these examples the dependence between observations has arisen because
the measurements at the most basic level, the individual measurements of blood
pressure or the glycaemic control of an individual patient, occur within groups,
the individual patient or the general practice, and such data are often referred to
as hierarchical. 1t is common for dependence to arise by this means and the class
of multilevel models provides a family of models that can address the statistical
problems posed by this kind of data. In this section only multilevel models for a
continuous outcome will be considered, but they can be very usefully employed
to analyse other types of outcome. A full discussion of this family of models can
be found in Goldstein (1995).

Hierarchical data formed by the serial measurement of a quantity on an
individual, also known as longitudinal data, occur throughout medicine and can
be addressed by a wide variety of methods in addition to those provided by
multilevel models. Consequently, discussion of this kind of data is deferred until
§§12.6 and 12.7. However, it should be borne in mind that the methods described
in this section can often be used fruitfully in the study of longitudinal data.

Random effects and building multilevel models

Rather than attempting to model variances and correlations explicitly, multilevel
models make extensive use of random effects in order to generate a wide variety
of dependence structures. A simple illustration of this can be found in Example
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9.5. The number of swabs positive for Preumococcus is recorded in families. A
simple model might assume that the mean number of swabs is w and the
observation on the jth member of the ith family can be modelled by:

where 8,, is a simple error term, with zero mean and variance o, that is independ-
ent from observation to observation. However, this model does not reflect the
fact that the observations are grouped within families. Moreover, if the variation
between families is larger than that within families, then this cannot be modelled
because only one variance has been specified. An obvious extension is to add an
extra term, &;, to (12.33) to accommodate variation between families. This term
will be a random variable that is independent between families and of the g, has
zero mean and variance o%. Thus, the new model for the jth member of the ith
family is:

W+ &+ gy

It should be noted that it is the same realization of the random variable that is
applied to each observation within a family; a consequence of this is that
observations within a family are correlated. Two observations within a family
have covariance o7 and, as each observation has variance % + o2, the correla-
tion is

0%/ (0% + o?). (12.34)

This is not surprising; the model is such that families with a propensity to exhibit
pneumococcal infection will have a large value for & and as this is applied to each
member of the family, each family member will tend to report a large value—that
is, the values are correlated. Clearly, this tendency will be less marked if the
within-family variation is substantial relative to that between families; this is
reflected in (12.34) because, as 0% /0% becomes larger, (12.34) becomes smaller. It
should be noted that correlations generated in this way cannot be negative: they
are examples of the intraclass correlation discussed in §19.11.

Because they are random variables, the terms & and € are referred to as
random effects and their effect is measured by a variance or, more accurately, a
component of variance, such as o? and o%. More elaborate models can certainly
be built. One possibility is to add extra terms that are not random (and so are
often referred to as fixed effects) to elaborate on the simple mean w. In Example
9.5 the families were classified into three categories measuring how crowded their
living conditions were. The model could be extended to

W+ Brx + Boxa + & + gy, (12.35)

where x1; = 1 if the ith family lives in crowded conditions and is 0 otherwise, and
xy; = 1 if the ith family lives in uncrowded conditions and is 0 otherwise. The
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parameter p. now measures the mean number of swabs positive for Pnreunio-
coccus in families living in overcrowded conditions. Note that the variables v,
and x> need only a single subscript 7 because they measure quantities that only
vary at the level of the family.

If the age of the family member was thought to affect the number of positive
swabs then this could be incorporated into the model by allowing a suitable term
in the model, such as

W+ BI.\’“ + Bz.\‘g,‘ 4 83.\‘3,"/ + ri/ + €. (1236)

where x3; is the age of the jth member of family /. As age varies between
members of a family, the variable x5 requires two subscripts: /, to indicate family,
and /, to indicate the individual within the family. Of course, given the typical age
differences within a family. the use of a linear term in this example is question-
able but this can be overlooked for the purpose of illustration. Not only might
the age of an individual affect the outcome but the rate of increase might vary
between families. This can be incorporated by allowing the coefficient of age, B,
to vary randomly between families. This can be built into the model by extending
(12.36) to

B+ Brxii + Boxai + (By + ny)vsy + & + €, (12.37)

where B3 is now the mean slope and n; varies randomly between families with
variance o7. The analyst can decide whether to insist that the random effects ),
and & are uncorrelated or to allow them to have covariance o,z For the latter
model the variance of the jth member of family / is

N} o) ) .
03X + 200F X3 + O + 07 (12.38)

It should be noted that allowing the slope to vary randomly has induced a
variance that changes quadratically with age. Also, responses from members of
the same family, say j and j/, now have a correlation that depends on their ages,
namely,

2 . 2
0X35 X350 + 0pp (X35 4+ X37) 4+ 0
(D2 . 2 2 2.2 . 2 AV

In this way a family of models can be defined which allow many forms of
data to be analysed.

Method of Estimation

For some purposes and sufficiently regular problems, apparently ad hoc meth-
ods are optimal. For example, suppose the aim is to compare the mean number
of swabs positive for Pneumococcus between crowded and overcrowded families
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in Example 9.5. A simple analysis would be to compute the mean number of
swabs in each family and compare the two groups, using the six family means in
each group as the outcome variable. If model (12.35) obtained, then the differ-
ence in group means would estimate (3; and the pooled within-group variance
would estimate 02 + n~'o?, where n is the (constant) size of each family. It is
perhaps not surprising that no new methodology is needed for this analysis, as
the split-unit analysis of variance described in §9.6 can provide a complete
analysis of these data.

The split-unit analysis of variance could still cope if the number of families at
each level of crowding were unequal, but the method would fail if the number of
people within each family were not constant. The mean for the ith family would
have variance 0% + n; 'o?, where n; is the size of family i. As this varies between
families, an unweighted mean of the families would not necessarily be the
optimal way to compare levels of crowding. However, the optimal weighting
will depend on the unknown value of the ratio 0%/0?; in general, the optimal
weighting will depend on several parameters whose values will have to be
estimated. A satisfactory approach to the general problem of analysing hierarch-
ical data requires methodology that can handle this kind of problem. A more
sophisticated problem is that the analysis should not only be able to estimate the
parameters that determine the appropriate weights, but should allow estimates of
error to be obtained that acknowledge the uncertainty in the estimates of the
weights.

Suppose the 90 observations in Example 9.5 are written as a 90 x 1 vector y,
then the model in (12.35) can be written:

y=Xp+0, (12.39)

where & 1s a 90 x 1 vector of error terms that subsume the terms £ and ¢ from
(12.35), X is a 90 x 2 matrix and § is a 2 x 1 vector. Consequently & has zero
mean and dispersion matrix V. The form of V is determined by the structure of
the random effects in the model and will be specified in terms of the variance
parameters. In this example, V has the form:

Vi

Vs,
p = . , (12.40)

Vis

i.e. ¥ has a block-diagonal structure where the only non-zero elements are those
in the submatrices, ¥;, shown. The matrix V; is the dispersion matrix of the
observations from family i. In general, this could be an n; X »#; matrix but, as all
the families in this example are of size 5, each V; is a 5 x 5 matrix. As has been
noted, the variance of each response is 0% -+ o2 and the covariance between any
two members of the same family is o-%, so each V; is
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2 4 2 2 2 2 2
O +0 70F 0F or 0%
0°2F 0% —+~0’2 0"17?: 0% 0'%
GZF 0‘%- O'2F+0’2 0'2F 0%;
2 2 2 2 2 2
0‘5 05 0';- G'F—};O’ 20F ;
o% (o OF oF op +0°

If the values of 0%, 6% were known, then the estimator of the 3 parameters in
(12.39) having minimum variance would be the usual generalized least squares
estimator (see (11.54)):

B=xTr'x)'xTyly (12.41)

As o2, 0% are unknown, the estimation proceeds iteratively. The first estimates of
B are usually obtained using ordinary least squares, that is assuming ¥ is the
identity matrix. An estimate of & can then be obtained as 6= y—X B. The
90 x 90 matrix 68 has expectation ¥ and the elements of both these matrices
can be written out as vectors, simply by stacking the columns of the matrices on
top of one another. Suppose the vectors obtained in this way are W and Z,
respectively, then Z can in turn be written 20";%2/(, where the z; are vectors of
known constants. In the case of Example 9.6, 07 = ¢%, 03 = ¢ and the z vectors
comprise 0s and 1s. A second linear model can now be fitted using generalized
least squares with W as the response, the design matrix comprising the z vectors
and the parameter estimates being the estimates of the variance components
defining the random effects in the model; further details can be found in Appen-
dix 2.1 of Goldstein (1995). New estimates of the Bs can be obtained from
(12.41), with ¥ now determined by the new estimates of the variance compon-
ents. The whole process can then be repeated until there is little change in
successive parameter estimates. This is essentially the process used by the pro-
gram MLwiN (Goldstein et al., 1998) and is referred to as iterative generalized
least squares (IGLS).

If the approach outlined above is followed exactly, then the resulting esti-
mates of the variance components will be biased downwards. This is because in
the part of the algorithm that estimates the random effects the method uses
estimates of fixed effects as if they were the correct values and takes no account
of their associated uncertainty. This is essentially the same problem that arises
because a standard deviation must be estimated by computing deviations about
the sample mean rather than the population mean. In that case, the solution is to
use 7 — 1 in the denominator rather than n. A similar solution, often referred to
as restricted maximum likelihood (see Patterson & Thompson, 1971), can be
applied in more general circumstances, such as those encountered in multilevel
models, and is then called restricted iterative generalized least squares (RIGLS).

A complementary problem arises from neglecting uncertainty in estimates of
the random effects. Standard theory allows values for the standard errors of the
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parameter estimates to be obtained; for example, the dispersion matrix of the
estimates of the fixed parameters can be found as (XTV~1X )*1. In practice, V'is
evaluated using the estimated values of the variance components but the fore-
going formula takes no account of the uncertainty in these estimates and is
therefore likely to underestimate the required standard errors. For large data
sets this is unlikely to be a major problem but it could be troublesome for small
data sets. A solution is to put the whole estimation procedure in a Bayesian
framework and use diffuse priors. Estimation using Markov chain Monte Carlo
(MCMC) methods will then provide estimates of error that take account of the
uncertainty in the parameter estimates. For a fuller discussion of the application
of MCMC methods to multilevel models, see Appendix 2.4 of Goldstein (1995)
and Goldstein et al. (1998). The use of MCMC methods in Bayesian methodol-
ogy is discussed in §16.4.

More generally, this matter does, of course, raise the question of what
constitutes a small or large data set, as this is not entirely straightforward
when dealing with hierarchical data. There is no longer a single measure of the
size of a data set; the implications of having 400 observations arising from a
measurement on each of 20 patients in each of 20 general practices will be quite
different from those arising from measuring 100 patients in each of four prac-
tices. Broadly speaking, it is important to have adequate replication at the
highest levels of the hierarchy. If the model in (12.35) were applied to the
example of data from general practices, with & representing practice effects,
only one realization of £ would be observed from each practice, and a good
estimate of o% therefore requires that an adequate number of practices be
observed. Attempts to try to compensate for using an inadequate number of
practices by observing more patients in each practice will, in general, be futile.

Estimation of residuals

In §11.9 simple regression models were checked by computing residuals. Resi-
duals also play an important role in the more elaborate circumstances of multi-
level models, and indeed have more diverse uses.

The residuals are clearly useful for checking the assumptions of the model; for
example, normal probability plots of the residual effects at each level allow the
assumptions underlying the random effects within the model to -be assessed. It
should, however, be noted that there may be more than one set of residuals at a
given level, since there will be a separate set corresponding to each random effect.
For example, in (12.37) there will be a set of residuals at the level of the
individual, corresponding to €;, but there will also be two sets of residuals at
the level of the family, corresponding to n; and &,.

However, in addition to their role in model checking, the residuals can
be thought of as estimates of the realized values of random effects. This can be
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potentially useful, especially for residuals at levels above the lowest; for example,
in a study of patients in general practices the practice-level residual might be used
to help place the specific practice in the context of other practices, once the
influence of other effects in the model had been taken into account. In particular,
they might be used in attempts to rank practices. However, attempts to rank
units in this way are fraught with difficulty and should be undertaken only with
great circumspection; see Goldstein and Spiegelhalter (1996) for a fuller discus-
S1011.

The extension of the idea of residuals beyond those for a standard multiple
regression (see §11.9) gives rise to complexities in both their estimation and their
definition. There is considerable merit in viewing the process as estinating
random effects rather than as an exercise in extending the definition of a residual
in non-hierarchical models. Indeed, there is much relevant background material
in the article by Robinson (1991) on estimating random effects.

As a brief and incomplete illustration of the issues, consider model (12.35).
The family-level residuals are {£;} and these are ‘estimates’ of the random
variables {¢} that appear in the model. As Robinson (1991) discusses, some
statisticians are uneasy about this, seeing it as lying outside the realm of para-
meter estimation. However, even if such objections are accepted, there is likely to
be little objection to the notion of predicting a random effect and the usual
definition for residuals in a multilevel model is often put in this way, namely,

A A A2 A
Yo M B] s B:Z“ OFs 62)'

%i - E(%f

If the ‘raw’ residuals are defined as r;; = y; — L — Byx1; — Byxy and the mean
raw residual for family i is 7 = > 7, r;/n; then the above expectation can be

Lt =
expressed as:

éf . TM({EMM", i (12.42)

It might have been expected that the family-level residual would simply be 7; but
(12.42) is used instead. The difference, namely the factor 6%/(6% + 62/n;), is
often referred to as a shrinkage factor, as its effect is to ‘shrink’ 7; towards zero
because the factor is always between 0 and 1. If the within-family variation is
small compared with that between families, or if the size of the family is large, the
shrinkage is minor. However, for small families the effect can be noticeable. The
reasons for the appearance of this factor can best be appreciated if the procedure
is considered in the context of estimation. Information on the term §; is obtained
from observation on family i. If substantial information is available from the
family, then the estimate 7, is essentially sound. However, if few observations are
available within a given family the method provides an estimate that is a
compromise between the observed values and the population mean of the &,
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namely, 0. It should be noted that this definition naturally leads to individual-
level residuals being defined to be r;; — £; rather than i — T

If the residuals at levels above the lowest are to be used in their own right,
perhaps in a ranking exercise for higher-level units, it may be necessary to
compute appropriate standard errors and interval estimates. For discussion of
these issues, the reader should consult Appendix 2.2 in Goldstein (1995).

Example 12.6

A trial was conducted to assess the benefit of two methods of giving care to patients who
had recently been diagnosed as having Type II diabetes mellitus. The trial was run in
general practices in the Wessex region of southern England with 250 patients from 41
practices, 21 randomized to the group in which nurses and/or doctors in the practice
received additional training on patient-centred care (the intervention group) and patients
in the other 20 practices received routine care (the comparison group). As the data
comprise patients within practices, it is appropriate to use a method of analysis for
hierarchical data and a multilevel model is used for the analysis of data on body-mass
index (BMI: weight of patient over the square of their height, in kg/ mz). Several outcomes
were measured and further details can be found in Kinmonth ef al. (1998). In that report
simpler methods were used because, as will be demonstrated, the variation between
practices is not substantial compared with that within a practice.

The modelling approach reported here is based on a subset of 37 practices and 220
patients. The model fitted has four fixed effects and two random effects. The four fixed
effects are a general mean and three binary variables: (i) a variable indicating the treat-
ment group to which the practice was allocated in the randomization, x; = 0 for compar-
ison and x; = 1 for the intervention group; (ii) a variable indicating whether the number
of patients registered with the practice was above 10000, x, = 0, or below, x, = 1; and
(i) a variable indicating whether care was always given to these patients by a nurse,
x3 = 0, or otherwise, x3 = 1. There are random effects for the practices, with variance 0’%},
and for the patients, with variance o, so the full model is

Vij = o+ Bixu + Byxo + Byxsi + & + €y

The term for a treatment effect obviously must be present in the model and the terms
for the size of the practice and the care arrangements within a practice are included
because these were used to stratify the allocation procedure. In this instance, no fixed
effects vary at the patient level. If the model is fitted using RIGLS, the estimates of the
parameters are as follows (fixed effects in kg/m2 , variances in kg’ /m:

Parameter n B, B, B, o’ o’
Estimate 28.67 1-69 0-11 0-90 0-99 34-85
SE I-15 0-90 095 1-18 1-57 3-58

The mean BMI is estimated to be 1.7 kg/m? higher in the intervention group than in the
comparison group.
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The estimate of 07 is considerably smaller than its standard error, which is the basis for
noting that an analysis which ignores the clustering of patients into practices is unlikely to
be misleading. Confidence intervals for the parameters, in particular the treatment effect,
can be constructed in the usual way provided that the random effects can be assumed to
follow normal distributions. This is checked in Fig. 12.10: note that panel (a) contains 220
points, as it corresponds to the random effects for patients, while panel (b), which corres-
ponds to the practice random effect. has only 37 points. The plots are certainly reasonable
confirmation of the assumption of normality, although the pattern for larger residuals at
the patient level suggests that some further analysis may be helpful. Note the different
scales, which reflect the marked difference in the sizes of the estimates of o and of).

The estimates given above are from a method, RIGLS, that takes account of the
uncertainty in the fixed effects when these are used to find estimates of random effects, but
the quoted standard errors take no account of the uncertainty in the estimates of random
effects. To do this a method based on a Bayesian approach, with diffuse priors and estima-
tion using a Gibbs sampler (see §16.4), would be required. The estimate of treatment
effect, its standard error and a 95% confidence interval were computed for each of three
methods of estimation. The first is IGLS, the second is RIGLS and the last is a Bayesian
formulation with fixed effects having normal prior distributions, with very large variance,
and random effects having priors that are uniform between 0 and a very large value.

Method Treatment effect Standard error  95% confidence interval estimate
IGLS 1-64 kg/m” 0-85 kg/m? (=0-03,3-31) kg/m
RIGLS 1-69 kg/m’ 0-90 kg/m’ (—0-07,3-45) kg/m"
Gibbs sampler  1.76 kg/m” 101 kg/m* (=0-19,3-79) kg/m~

The point estimates of treatment effect are very similar and, for all practical purposes,
identical. The Gibbs sampler is based on a chain of length 40000, and technical diagnostic
values suggest that this is adequate to ensure convergence of the method. In this case, the
95% confidence interval estimate is derived from the distribution of estimates of treatment
effect found from the chain. It is also clear that as the estimation method takes into account
sources of variation neglected in other approaches, the estimate of standard error, and
hence the width of the interval estimate, increases.
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Fig. 12.10 Normal probability plots for the estimated residuals at the patient and practice levels from
the trial of patient-centred care in general practice.
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All the interval estimates demonstrate that any advantage the intervention group
might have over the comparison group is practically negligible, whereas the comparison
group could be substantially better than the intervention group.

Other uses of multilevel models

It has already been mentioned that multilevel models can be very useful in the
analysis of hierarchical data when the response is not continuous, but even with
continuous responses there is still scope for useful extensions. A few of these are
outlined below.

Variations in random effects

In model (12.37) the variance increases with the square of age according to
(12.38). However, it may be that this is inappropriate and a linear dependence
is required. In this case the same model can be fitted, but in the fitting procedure
the parameter o2 is held at 0. This is perhaps best regarded as a device for fitting
the appropriate model, as the notion of a variable with a non-zero covariance but
zero variance is not easy to interpret.

It should also be pointed out that the variation at the lowest level of the
hierarchy, which hitherto has been assumed to be constant, can be made more
elaborate. For example, allowing different variances at the lowest level of the
hierarchy for different groups is possible.

As will be seen-in the next section, observations made longitudinally on, for
example, a patient are often serially correlated. A reasonable supposition is
that the correlation is larger between measurements made closer together in
time than further apart. However, the correlations induced between measure-
ments on the same patient by a model which is of the form (12.34) are the
same regardless of their separation in time. A model which overcomes this is
known as the autocorrelation or autoregressive model, and a simple version of this
leads to a correlation of pI~*! between observations at times r and 5. This kind of
feature can be accommodated in multilevel models; see Goldstein et al. (1994) for
details and §12.7 for a further discussion of autoregressive processes.

Non-linear models

In all the multilevel models discussed hitherto the response has depended linearly
on the covariates. Non-hierarchical non-linear models were discussed in §12.4
and these can be extended to hierarchical data. Such models can be particularly
useful for growth data; the data are hierarchical because individuals are
measured longitudinally, but adequate modelling of the form of the response
usually requires non-linear functions.
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Non-linear models can be accommodated by repeatedly using Taylor expan-
sions to linearize the model. There are close connections between this way of
extending linear multilevel models and the types of model obtained by extending
non-linear models to hierarchical data. Models generated in this way have
recently been widely used to model pharmacokinetic data and this alternative
approach is well described by Davidian and Giltinan (1995).

Multivariate analysis

Multivariate analysis, which is considered at greater length in Chapter 13, is the
term used to describe a collection of statistical techniques which can be used
when each observation comprises several variables, that is, each observation is a
vector of, say, p dimensions. For example, the concentrations of creatinine,
sodium and albumin in the blood of a patient may be measured, yielding as an
observation a three-dimensional vector, which will have a mean that is also a
three-dimensional vector and its ‘variance’ is a 3 x 3 dispersion matrix of var-
iances and covariances. Of course, each component of this vector will be on its
own scale and it will not, in general, be possible to specify common parameters
across components of the vector.

Deployment of a certain amount of ingenuity means that multivariate obser-
vations of this kind can be analysed as multilevel models, and it turns out that
there are some attractive benefits to viewing such data in this way. Suppose that
y; is a p-dimensional vector observed on patient i. It is assumed that if y were a
scalar then this would be the lowest level of a hierarchy but, despite the single
subscript, there is no implication that the patient is the top level of a hierarchy;
the subscript might, for example, be elaborated to describe a hierarchy in which
the patient is from a hospital, which in turn belongs to a given health authority.
The multivariate nature of y is accommodated by the device of constructing a
new lowest level to the hierarchy, which describes the variables within each
vector p;. This makes extensive use of dummy, i.e. 0-1, variables. To be specific,
suppose the scalar y; is the jth variable observed on patient i (so, for example, in
the above instance, y; might be the creatinine, yp the sodium and y;s the
albumin on patient 7); the model used is then

yij = Biz1y + Bozay + Bazay + &1y + Eai7aif + 3173y

where zy; is 1 if y; is an observation on creatinine (i.e. the first variable in the
vector y;) and 0 otherwise. Similarly zy; is 1 or 0 and is 1 only if y; is an
observation on the kth variable in the vector. The random effects are at the
level one up from the lowest level, i.e. the patient level in this example, and, in
general, have arbitrary variances and covariances. Note that there are no
random effects at the lowest level as this level is simply a device to distinguish
between the different variables within each observed vector.
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A notable advantage to this way of specifying multivariate data is that there
is no requirement that each variable is present in all the vectors—that is, the
vector can be only partially observed for some patients. If, for example, the
albumin is not measured on patient i then the model simply has no entry for y;;.
This can be very useful because incomplete vectors can cause serious difficulties
for standard approaches to multivariate analysis. It can be helpful if an element
of a vector is inadvertently missing, although the analyst must then be satisfied
that the omission is not for a reason that could bias the analysis (related concerns
to this arise in the analysis of longitudinal data and are discussed at more length
in the next section and also in clinical trials (see §18.6)). It can also be useful to
arrange to collect data in a way that deliberately leads to the partial observation
of some or all vectors. If the creatinine, sodium and albumin of the foregoing
example are to be observed on premature infants then it may not be permissible
to take sufficient blood for all items to be observed on each baby. It may then be
helpful to observe just two of the variables on each infant, to arrange the patients
into three groups and take just one of the three possible pairs of measure-
ments on each baby. This is a simple example of a rotation design, in which
predetermined subgroups of the variables of interest are observed on particular
individuals. Further details on rotation designs and on the application of
multilevel models to multivariate methods can be found in Goldstein (1995,
Chapter 4).

12.6 Longitudinal data

In many medical studies there is interest not only in observing a variable at a
given instant but in seeing how it changes over time. This could be because the
investigator wishes to observe how a variable evolves over time, such as the
height of a growing child, or to observe the natural variation that occurs in a
clinical measurement, such as the blood pressure of a volunteer on successive
days. A very common reason is to observe the time course of some intervention,
such as a treatment: for example the respiratory function of a patient at a series
of times after the administration of a bronchodilator, or the blood glucose of a
diabetic patient in the two hours after a glucose challenge.

Data collected successively on the each of several units, whether patients,
volunteers, animals or other units, are variously referred to as longitudinal data,
serial data or repeated measurements, although many other terms are encoun-
tered from time to time. Typically the data will be collected on several, say, g,
groups of individuals, perhaps defined by allocation to different treatments;
typically there will be »; units in the ith group. The jth unit in the ith group
will be observed k;; times. There is wide variation between studies in the timing
and number of the observations on an individual. The observations on each
individual constitute a time series, and in the next section methods that are
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traditionally described as applying to time series are discussed. However, such
methods apply to a single long series, perhaps comprising hundreds of observa-
tions, whereas the data discussed in this section typically arise from many shorter
series, often of two to 20 measurements per individual.

Another feature that varies widely between studies is why observations are
made when they are. Most studies attempt to make observations at preplanned
times; those which do not—for example, taking observations opportunistically,
or perhaps when some clinical event occurs—are likely to present formidable
problems of interpretation. For preplanned observations there is no requirement
that they be taken at regular intervals, and in fact it may often not be sensible to
do so; for example, observations may need to be taken more frequently when the
response is changing rapidly, provided, of course, that that aspect of the response
is of interest. For example, in the study of the profile of the blood level of a short-
acting drug, measurements may be made every 10 or 15 min in the initial stages
when the profile is changing rapidly, but then less frequently, perhaps at 1, 2 and
3h post-administration. In many studies in the medical literature the reasons
behind the timing of observations are seldom discussed, and it may be that this
aspect of research involving the collection of longitudinal data would benefit
from greater reflection.

Often it will be intended to measure individuals at the same set of times, but
this is not achieved in every case. Such missing data give rise to two separate
problems, which are often not distinguished from one another as clearly as they
might be. The first, which is largely technical, is that the varying number of
observations per individual may influence the type of analysis performed, as
some methods are less tractable, or even impossible, when the number of obser-
vations varies between individuals. The second problem, which is more subtle
and, because it can evade an unwary analyst, potentially more serious, is that the
missing data are absent for reasons related to the purpose of the study, so an
analysis of only the available data may well be biased and possibly misleading,
The second of these problems will be discussed at greater length towards the end
of the present section.

As with any statistical analysis, it is important when dealing with longitudinal
data that their structure is respected. The two most important aspects for long-
itudinal data are: (i) that the method should take account of the link between
successive measurements on a given individual; and (ii) that it should recognize
that successive measurements on an individual will not, m general, be independ-
ent. Despite warnings to the contrary (Matthews et al., 1990; Matthews, 1998),
both these aspects appear to be frequently overlooked in the medical literature,
where it is common to see separate analyses performed at the different times
when measurements were made. Such analyses ignore the fact that the
same individuals are present in successive analyses and makes no allowance for
within-individual correlation.
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Appropriate methods for the analysis of longitudinal data have been studied
intensively in recent years and there is now a very large statistical literature on
the subject. Some topics will be discussed in more detail below, but the reader
should be aware that it is a highly selective account. The selection has largely
-been guided by consideration of the issues outlined in the previous paragraph,
and in particular focuses on methods available for studying correlated responses.
Important areas, such as growth curves, which are concerned with the shape of
the response over time, are not mentioned and the reader should consult one of
the excellent specialist texts in the field, such as Crowder and Hand (1990) or
Diggle et al. (1994). Methods for graphing longitudinal data are also not cov-
ered. This is a surprisingly awkward but practically important problem, which
has received much less attention than analytical methods; articles which contain
some relevant material include Jones and Rice (1992), and Goldstein and Healy
(1995), as does Chapter 3 of Diggle et al. (1994).

Repeated measures analysis of variance

As was remarked in §12.5, the multiple measurements taken on a patient means
that longitudinal data can be viewed as a form of hierarchical data. It was also
noted in the previous section that a split-unit analysis of variance (see §9.6) could
analyse certain forms of sufficiently regular hierarchical data. It follows that
split-unit analysis of variance can be pressed into service to analyse longitudinal
data, with the whole units corresponding to the individuals and the subunits
corresponding to measurement occasion. When used in this context the techni-
que is usually referred to as repeated measures analysis of variance.

This method requires that each individual be measured on the same number of
occasions, say, k times, that is, k; = k. There is no requirement that the number of
individuals in each group is the same. If the total number of individuals in the
study is denoted by N = > _ | n;, the analysis of variance table breaks down as
follows into two strata, one between individuals and one within individuals.

Source of variation DF
Between-individuals stratum N —1

Groups g—1
Residual between individuals N-—g
Within-individuals stratum Nk —1)

Occasions k—1
Occasions X groups (g—1Dk—1)
Residual within individuals (N —-g)k—1)

Grand total Nk -1
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Use of this technique therefore allows the analyst to assess not only effects of
time (the Occasions row) and differences between groups (the Groups row), but
whether or not the difference between groups changes with time (the Occasions
x groups interaction). This is often the row of most interest in this technique.
However, some care is needed; for example, if the groups arise through random
allocation of individuals to treatments and the first occasion is a pretreatment
baseline measurement, then any treatment effect, even if it is constant across all
times post-randomization, will give rise to an interaction because there will
necessarily be no difference between the groups on the first occasion. A minor
problem is that, if there is a significant interaction between occasions and
groups, then it is natural to ask when differences occur. If there is a prior belief
of a particular pattern in the response, then this can be used to guide further
hypothesis tests. In the absence of such expectations, techniques that control the
Type I error rate need to be considered; the discussion in §8.4 is relevant here.
However, in applying these methods, it is important that the user remembers the
ordering implicit in the Occasions term and the fact that, in general, the response
is likely to change smoothly rather than abruptly with time.

A further problem with the method is that the variance ratios formed in the
within-individuals stratum will not, in general, follow an F distribution. This is a
consequence of the dependence between successive measurements on the same
individual. The use of an F test is valid under certain special circumstances but
these are unlikely to hold in practice. Adjustments to the analysis can be made to
attempt to accommodate the dependence under other circumstances and this can
go some way to salvaging the technique. The adjustments amount to applying
the usual method but with the degrees of freedom for the hypothesis tests for
occasions and occasions x groups reduced by an appropriate factor. More
details of this are given below, but a heuristic explanation of why this is a suitable
approach is because within-individual correlation means that a value on an
individual will contain some information about the other values, so there are
fewer independent pieces of information than a conventional counting of degrees
of freedom would lead you to believe. It is therefore sensible to apply tests with a
reduced number of degrees of freedom.

In order to be more specific, suppose that p; is the k-dimensional vector of
observations on individual ; and the dispersion matrix of this vector is 2. The
between-individuals stratum of the repeated measures analysis of variance can
be viewed as a simple one-way analysis of variance between groups on
suitably scaled individual totals, namely, the values proportional to 1'y,, where
1 is a k-dimensional vector of ones. The within-individual stratum is a simulta-
neous analysis of the within-individual contrasts, namely, of the ajTyh
where a, ... a;_; are k — 1 independent vectors each of whose entries sum to
Zero, 1.. ajTl = 0. The variance ratios in this analysis will be valid if the dispersion
matrix is such that ajTZaj is proportional to the identity matrix (see §11.6). One
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form for 3 that satisfies this is the equi-correlation structure, where all variances
in % are equal, as are all the covariances. However, this implies that pairs of
observations taken close together in time have the same correlation as pairs
taken at widely separated times, and this is unlikely to hold in practice.

By using the work of Box (1954a, b), Greenhouse and Geisser (1959) devised
an adjustment factor that allows the technique to be applied for an arbitrary
dispersion matrix. The adjustment is to reduce the degrees of freedom in the
hypothesis tests for occasions and for occasions x groups by a factor €, so, for
example, the test for an effect of occasions compares the usual variance ratio
statistic with an F distribution on (k— 1) ¢ and (N —g)(k — 1) ¢ degrees of
freedom. The factor €, often called the Greenhouse-Geisser ¢, is defined as

 {uCH)Y
Tk - DuCHZH)

where H = I, — %J %> Where I is a k X k identity matrix and Jy is a k x k matrix
of ones. If this correction is applied, then the variance ratios in the within-patient
stratum still do not follow an F distribution but the discrepancy is less than
would be the case without the correction. Of course, in practice & must be
estimated by substituting an estimate of 3 into (12.43) and the properties of
the test based on an estimated &€ may not be the same as those using the true
value. Huyhn and Feldt (1976) devised an alternative correction of similar type
whose sampling properties might be preferable to those of (12.43).

Calculation of (12.43) is awkward, requires an estimate of 3, and may have
uncertain properties when € has to be estimated. A practically useful device is
available because it can be shown that (12.43) must lie between (k — 1)™! and 1.
As the degrees of freedom decrease, any critical point, say the 5% point, of the F
distribution will increase. So, if an effect is not significant in an uncorrected test
in the within-individual stratum, then it will not become significant when the
correction is applied. Similarly, if an effect is significant when a correction using
(k—1)"" is used rather than ¢, then it would be significant at that level if the
correction in (12.43) were used. Using this approach the analyst only has to
compute an estimate of € for effects which are significant under the uncorrected
analysis but not under the analysis using the factor (k — };)wl,

The between-individuals stratum is also not without problems. The test for
equality of group means, which would only sensibly be considered in the absence
of an occasion by group interaction, is generally valid (given usual assumptions
about normality and equality of variances) because it is essentially the one-way
analysis of variance of the means of the responses on an individual. This
amounts to summarizing the response of an individual by the mean response,
and this is an automatic consequence of using repeated measures analysis of
variance. However, the mean response over time may not be an appropriate way
to measure a relevant feature of the response. The idea of reducing the k

(12.43)
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responses on an individual to a suitable scalar quantity, which can then be
analysed simply, is the key idea behind the important approach to the analysis
of longitudinal data that is outlined in the next subsection.

Summary measures

Perhaps the principal difficulty in analysing longitudinal data is coping with the
dependency that is likely to exist between responses on the same individual.
However, there is no more difficulty in assuming that responses from different
individuals are independent than in other areas of data analysis (this assumes, for
simplicity, that the individuals in the analysis are not embedded in a larger
design, such as a complex survey (see §19.2) or a cluster-randomized trial (see
§18.9), which may itself induce dependence). Consequently, if the responses on
individual i,y;, together with other information, such as the times of the
responses, #;, say, are used to compute a suitable scalar (i.e. a single value), s;,
say, then the s; are independent and can be analysed using straightforward
statistical methods. The value of this approach, which can be called the summary
measures method, rests on the ability of the analyst to be able to specify a suitable
function of the observations that can capture an important feature of the
response of each individual. For this reason the method is sometimes referred
to as response feature analysis (Crowder & Hand, 1990). The method has a long
history, an early use being by Wishart (1938). More recent discussions can be
found in Healy (1981), Yates (1982) and Matthews et al. (1990).

If, for example, the response of interest is the overall level of a blood
chemistry measurement, then the simple average of the responses on an indi-
vidual may be adequate. If the effect of some treatment on this quantity is being
assessed then it may be sensible to omit the first few determinations from the
average, so as to allow the treatment time to have its effect. A rate of change
might best be summarized by defining s; to be the regression slope of y; on #;.
Summaries based on the time-scale may be particularly important from a clinical
point of view: the time that a quantity, such as a drug concentration, is above a
therapeutic level or the time to a maximum response may be suitable summaries.
It may be that more than one feature of the data is of interest and it would then
be legitimate to define and analyse a summary for each such feature. Simple
bivariate analyses of summaries are also possible, although they seem to be little
used in practice. Judgement should be exercised in the number of summaries that
are to be analysed; summaries should correspond to distinct features of the
response and in practice there are unlikely to be more than two or three of these.

The choice of summary measure should be guided by what is clinically or
biologically reasonable and germane to the purpose of the study. Indeed, it is
preferable to define the summary before the data are collected, as this may help
to focus attention on the purpose of the investigation and the most appropriate
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times at which to make observations. This is particularly important when time-
based summaries, such as time above a therapeutic level, are considered. Any
prior information on when concentrations are likely to reach and decline from
therapeutic levels can lead the investigators to placing more observations around
these times. Occasionally, theoretical background can inform a choice of sum-
mary measure; the maximum response and the area under the response versus
time curve are summaries that have long been used in pharmacology for such
reasons. Choice of summary on the basis of the observed responses can be useful
but, unless the summary ultimately chosen has a clear biological or clinical
interpretation, the value of this approach is much reduced. Healy (1981) outlines
the role of orthogonal polynomials in the method, although this is probably of
greater theoretical importance in relating the method to other approaches than
of practical interest.

There are, of course, drawbacks to the method. The most obvious is that in
some circumstances it may not be possible to define a summary that adequately
captures the response over time. Other problems in longitudinal data analysis are
not naturally approached by this method; assessing whether changes in the blood
concentration of a beta-blocker are related to changes in blood pressure is an
example. Also there are technical problems. Many of the simple statistical
methods that it is assumed will be used for the analysis of the summaries suppose
that they share a common distribution, except perhaps for a few parameters such
as those describing differences in the mean between treatment groups. In parti-
cular, the variances will often be assumed equal. This can easily be violated and
this is illustrated by the following situation. Suppose the summary chosen is the
mean and that the model for the elements of y, is

Vi = +& + gy, (12.44)

where & and g; are random variables with zero mean and var(g) = ¢% and
var(e;) = o. The mean of the elements of y; has variance o + n;'o? and this
will differ between individuals unless all the n; are equal. While the intention at
the outset of the study may have been to ensure that all the n; were equal, it is
almost inevitable that some individuals will be observed incompletely. However,
even if there are marked differences between the »;, there will be little important
difference in the variances if the between-individuals variance, 0%, is substantial
relative to the within-individual variance, o*. Obviously there may be circum-
stances when concerns about distributional aspects of summary measures may be
less easy to dismiss.

The problem with unequal variance for the mean response arose from
unequal replication, which can commonly be attributed to occasional missing
data. This leads naturally to the problem of dealing with missing values, which
are of concern throughout statistics but seem to arise with especial force and
frequency in longitudinal studies. On a naive level the method of summary
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measures is sufficiently flexible to deal with missing data; a summary such as a
mean or regression slope can often be computed from the observations that are
available. However, to do so ignores consideration of why the unavailable
observations are missing and this can lead to a biased analysis. This is clearly
illustrated if the summary is the maximum observed response: if the response is
measured at weekly visits to an out-patient clinic and large values are associated
with feeling especially unwell, then it is precisely when the values of most interest
arise that the patient may not feel fit to attend for observation. The problem of
missing data, which is discussed in more detail at the end of this section, is only a
special problem for the method of summary measures in so far as the method
may make it too easy to overlook the issue altogether, and this should not be a
problem for the alert analyst.

Modelling the covariance

A natural method for dealing with longitudinal data is to view the response on an
individual as a vector from a suitable multivariate distribution, typically a multi-
variate normal distribution. In this way the dependence is handled by assuming
each vector has a dispersion matrix ¥; if each vector has k elements then the
%k(k + 1) parameters describing the dispersion are estimated from the data in the
usual way for multivariate analysis. For example, two groups could be compared
using Hotelling’s 77 statistic (see Mardia er al., 1979, pp. 139 ff.). A good
discussion of the application of multivariate methods to longitudinal data can
be found in Morrison (1976).

There are, however, good reasons why this approach is seldom adopted. As
with many medical applications of multivariate methods (see multiple outcomes
in clinical trials, §18.3), these general methods are rather inefficient for special-
ized application. In the case of longitudinal data analysis the dispersion matrix
may plausibly take forms in which correlations between occasions closer in time
are higher, rather than the general form allowed by this class of methods.
Differences in mean vectors might also be expected to change smoothly over
time. In addition, the ever-present problem of missing values means that in
practice not all vectors will be of the same length and this can cause substantial
problems for standard multivariate methods.

An alternative way to view substantially the same analysis, but which readily
accommodates unequal replication within each individual, is to put the analysis
in terms of a linear model. If the vectors y; from the N individuals in the study are
stacked to form a single M-dimensional vector y (where M is the number of
observations in the study), then this can be written with some generality as
y = XP +e, where X is an M x p-dimensional design matrix and B is a p-
dimensional vector describing the mean response. The longitudinal nature of
the data is described by the form of the dispersion matrix of €, namely . This is
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block diagonal, as in (12.40), now with N blocks on the diagonal, and the
dispersion matrix for the ith individual in the study, %, is the ith block. Usually
the 3,; are different because of missing data, so each 3; comprises the available
rows and columns from a common ‘complete case’ matrix 2.

General statistical theory tells us that the best estimator of B is

. N -1
B= @ X?Z;‘Xi) (Z?il X?Z;‘yi), (12.45)

where X; is the matrix comprising the rows of X that relate to individual .
However, this estimator is only available if the 3,; are known and this will hardly
ever be the case. An obvious step is to use (12.45) with an estimate, 2,-, in place of
2. If all 3,; were the same, such an estimator would be:

S - X B - X"

N — » 5 Ji i J i i .

In the case of missing data there is no simple solution; a sensible approach is to
estimate the (i, v)th element of 3, from the terms (y; — X,8)(y; — X;B)" in which
the (u, v)th element is present.

It should be pointed out that when @ is estimated using (12.45), but with an
estimated dispersion matrix, there is no longer any guarantee that the estimator
is optimal. If the data can provide a good estimate of the dispersion matrices,
then the loss is unlikely to be serious. However, a general dispersion matrix such
as %, comprises 1k(k + 1) parameters that need to be estimated, and it would
effect a useful saving if the information in the data could be used to estimate
fewer parameters. In addition, a general dispersion matrix may well be inap-
propriate for data collected over time; for example, it may be plausible to expect
correlations to decrease as the time between when they were recorded increases.
Therefore it may be useful to attempt to provide a model for the dispersion
matrix, preferably one using substantially fewer than k(k 4 1) parameters.

There are various approaches to this task. One is to introduce random effects
which mduce a particular form for the dispersion matrix. This is the approach
outlined in the previous section in the more general setting of multilevel models.
An important reference to the application of this approach in the analysis of
longitudinal data is Laird and Ware (1982); further details can be found in
Chapter 6 of Crowder and Hand (1990).

In some applications the random effects method will be sufficient. However, if
the model, for example, for serial measurements of blood pressure on patient i, is
as in (12.44), then it may be inadequate to assume that the terms €;1, €p, ..., €x,
are independent and some further modelling may be required. It may be that &
could be decomposed as €; = {; + . The second of these terms may well be
considered to be independent from one measurement occasion to the next, with
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constant variance o, and would represent items such as measurement error. The
first term would have a more complicated dispersion matrix, %(0) defined in terms
of a vector of parameters 0, preferably of low dimension. The dependence between
the different elements {;,(, ...,{; measures the genuine serial correlation
between the measurements of blood pressure within patient 7.

Many different models have been suggested in the literature as candidates for
3.(6). Only one type is discussed here, the widely used first-order autoregression
model (see §12.7), which for observations taken at equally spaced intervals, say,
times 1,2, ...,k, has

%(0), = 07,8/ for a scalar — 1 < 0 < 1. (12.46)

This form is used because it arises from the following equation for generating the
Lins Loy -2 Ly, namely,

Ly =00, +w;j=2.....k (12.47)

in which each term is related to the previous term through the first part of the
equation, but with a random perturbation from the innovation term ;. This
term comprises independent terms with zero mean and variance o (1 — 0%). It
should be noted that the above equation does not specify {; and in order to
complete matters it is necessary to supplement the equation with {;; = w;; and, if
the above equation for 2(0) ; 18 to be obtained, then it is further required to set
the variance of w;; to o%, This rather clumsy manoeuvre, which appears
more natural if the time index in (12.47) is extended indefinitely in the negative
direction, is required to obtain a stationary autoregression, in which the variance
of the { term does not change over time, and the correlations depend only on
the interval between the occasions concerned. If w;; had the same variance as the
other innovation terms, then a non-stationary first-order autoregression would
result.

If the matrix in (12.46) is inverted, then the result is a matrix with non-zero
entries only on the leading diagonal and the first subdiagonal. This is also true
for the dispersion matrix that arises from the non-stationary first-order auto-
regression. This reflects a feature of the dependence between the observations
known as the conditional independence structure, which also arises in more
advanced techniques, such as graphical modelling (Whittaker, 1990; Cox &
Wermuth, 1996). The structure of the inverse dispersion matrix bears the follow-
ing interpretation. Suppose the blood pressure of a patient had been measured
on each day of the week; then, provided the value on Thursday was known, the
value on Friday is independent of the days before Thursday. In other words, the
information about the history of the process is encapsulated in the one preceding
measurement. This reflects the fact that (12.47) is a first-order process, which is
also reflected in there being only one non-zero diagonal in the inverse dispersion
matrix.
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This can be extended to allow second- and higher-order processes. A process
in which, given the results of the two previous days, the current observation is
then independent of all earlier values is a second-order process, and an rth-order
process if the value of the » days preceding the present need to be known to
ensure independence. The inverse dispersion matrix would have, respectively,
two or r subdiagonals with non-zero entries. Generally, this is referred to as an
ante-dependence process, and the two first-order autoregressions described
above are special cases. If the total number of observations on an individual is
k, then the (k — 1)th-order process is a general dispersion matrix and the zero-
order process corresponds to complete independence. The theory of ante-
dependence structures was propounded by Gabriel (1962). An important con-
tribution was made by Kenward (1987), who realized that these complicated
models could be fitted by using analysis of covariance, with the analysis at any
time using some of the previous observations as covariates.

Although a very useful contribution to the modelling of the covariance of
equally spaced data, the ante-dependence models are less useful when the inter-
vals between observations vary. Diggle (1988) proposes a modified form of
(12.46) suitable for more general intervals.

The way a covariance model is chosen is also important but is beyond the
scope of this chapter. Excellent descriptions of ways to approach empirical
modelling of the covariance structure, involving simple random effects and
measurement error terms, as well as the serial dependence term, can be found
in Diggle et al. (1994), especially Chapters 3 and 5.

Generalized estimating equations

Although modelling the covariance structure has considerable logical appeal as a
thorough approach to the analysis of longitudinal data, it has some drawbacks.
Identifying an appropriate model for the dispersion matrix is often difficult and,
especially when there are few observations on each patient or experimental unit,
the amount of information in the data on the parameters of the dispersion matrix
can be limited. A consequence is that analyses based on (12.44) with estimated
dispersion matrices can be much less efficient than might be imagined because of
the uncertainty in the estimated dispersion matrices. Another difficulty is that
most of the suitable and tractable models are based on the multivariate normal
distribution.

An alternative approach is to base estimation on a postulated dispersion
matrix, rather than to attempt to identify the correct matrix. The approach,
which was proposed by Liang and Zeger (1986) and Zeger and Liang (1986), uses
generalized estimating equations (GEEs) (see, for example, Godambe, 1991) and
has been widely used for longitudinal data when the outcome is categorical.
However, it is useful for continuous data and will be described in this context.




