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Introduction to Bayesian methods

Partly based on

Everitt, B. S.: Modern Medical Statistics.
Arnold Publishers, 2003. Section 8.2
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Frequentist vs Bayesian statistics.

The probability distribution P(D|6&) of our
data D depends on some parameter(s) 6.

Example:

The frequentist regards @as an unknown constant

The Bayesian regards 6 as an (unobserved)
random variable from a probability distribution,
prior distribution, P(6).

.
E———

Bayes rule (Rosner, eqn 3.10)

B, B,

@, | 4= PAIBIPG)

> P(AIB)P(B)

.
E———

Following Bayes’ theorem, the probability
distribution of the parameter given the data,
posterior distribution, is

P(6)P(D|6)

PeID)= [P@P(DI0)0

The denominator is a constant (does not depend on 6), so

P(@|D) « P(O)P(D|09)

posterior distribution oc prior distribution x likelihood
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Bayesian estimate: éB =E(@|D)

(1-a) Bayesian confidence interval (credibility interval):
The o/2 quantiles (6,, 6y) of the posterior distribution

Interpretation (!):

P <0<6,)=1-a
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Example:
Normal distribution.

Prior distribution:
u~N(v,z%)

Posterior distribution:
4] (X4, X)) ~ N(Bv+(1-B)X,(1-B)c?/n)

o?/n

where B=———
o'In+t
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Bayes estimate (posterior mean)
lg =Bv+(1-B)X

A weighted average between the prior mean v and X
If the prior variance z*is large,

we have a vague or uninformative prior,
and [z, ~ X
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Example:
Binomial distribution:
number of events in n trials: X ~ bin(n, 8)

Prior distribution:

6 ~ Beta(a,b)
£(0)=LBED) porq_ gy gor 0<pet
r@)r(b)
a>0, b>0
a
E(0) =——
©) a+b
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The Beta distribution

——a=b=1

— —a=b=1/2
- - -a=2,b=4
— - a=b=6,5
= a=8,b=2

f(Theta)

e U
T




Posterior distribution:
f| X ~ Beta(a+ Xx,b+(n—x))
Posterior mean:

E(H|x)=ﬂ
a+b+n

a = “pseudo number of events”
a+b="pseudo number of trials”
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Table 8.1 Mortality rates in 12 hospitals performing cardiac surgery in babies

Hospital

A B C D E F G H | J K L

No.of operations (n) 47 148 119 810 211 196 148 215 207 97 256 360
Noofdeaths(r) 0 18 8 46 8 13 9 31 14 8 20 24
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Fixsd atfects: © mean +---+ 95% CI
Shrunk estimates: « mean —— 95% Cl
H (31/215) 4
B (18/148) 4
K (29/256)
J (8/87)+

C (8M118)4 o,
1 {14/207) 4
F (13/196) -
L (247360)
G (8/148)
D (46/810) 4
E@an)] e
A (0/47) - :-I. I :
0% 5% 10% 15%
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Meta Analysis. Models and Methods.

Mainly based on:

Normand, Sharon-Lise T: Tutorial in
Biostatistics. Meta-Analysis:
Formulating, Evaluating, Combining,
and Reporting. Statistics in Medicine,
18, 321-359 (1999)

e U
T

Def.

Meta-Analysis may be broadly defined as
the quantitative review and synthesis of the
results of related but independent studies.

Meta-analyse er giennomgang og
sammenfatning av relaterte, uavhengige
studier.
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Examples:

« Randomized controlled trials of lidocaine vs
placebo for patients with myocardial infarction

* LOS (length og stay) in hospital for stroke
patients, specialist inpatient stoke care vs
nonspecialist stoke care
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Table 1. Prophylactic use of lidocaine after a heart attack: evaluating mortality
from prophylactic use of lidocaine in acute myocardial infarction. Source:
reference 1

Source Number randomized Number dead
Lidocaine Control Lidocaine Control

1. Chopra et al. 39 43 2 1
2. Mogensen 44 44 4 4
3. Pitt et al. 107 110 6 4
4. Darby er al. 103 100 7 5
5. Bennett er al 110 106 7 3
6. O’Brian ef al. 154 146 11 4
Total 557 549 37 21
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Table 11. Specialist care for stroke patients from nine studies: comparing specialist
multidiseiplinary team care for stroke i with rout;
in general medical wards. Source: reference 2

Source Specialist care Routine management
Mean Mean

N LOS sD N LOS sD
1. Edinburgh 155 550 470 156 750 64-0
2. Orpington-Mild 31 270 70 32 290 4.0
3. Orpington-Moderate 75 640 170 71 1190 290
4. Orpington-Severe 18 660 200 18 1370 480
5. Montreal-Home ] 140 80 13 180 10
6. Montreal-Transfer 57 19:0 70 52 180 40
7. Newcastle 1993 34 520 450 33 410 340
B. Umea 1985 110 210 160 183 310 270
9. Uppsala 1982 60 300 270 52 230 200
Total 548 610

LOS = length of stay measured in days; SD = standard deviation
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Fixed effect vs random effect models o )

Combining studies:

) ) Different classes of outcome (study summary)

« Fixed effects: The studies have identical
characteristics and study effects.

» Random effects: The studies may have different

effects and different characteristics » Discrete outcome such as difference in proportions
« Continuous outcome such as means
» Debate as to the choice of appropriate model « Test statistics

» Always reasonable to assume some between-study
variation and few reasons to believe it is zero.

(not exhaustive list)
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Binary outcome:
outcome
Yes No
aj b a+b=nr;
Group
Ci di c+d=nc;j
Study number i: f; =i, Pei =G
nTi nCl
NTNU

Risk differences, relative risks, odds ratios
Etimators and confidence intervals as described in Rosner (2005), Section 13.3
Estimator Standard deviation
Risk s _ /pm A-pr) | Pu-pe)
difference 4= P =P K n, * ng
Relative
PO 1- 1-
risk L= pTvl Pei SLog(n) = P + Po
(Risk ratio) NiPri NeiPei
W,
odts |, Pullob) | TTTT
ratio Pe; /(1= Pei) o) \a b ¢ d
ILd Bl
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Continuous outcome:
Difference in means from study number i:
YI = XTi - YCl

with standard deviation s; calculated as

where g 2o O (N
’ Ny +Ng; =2

.
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Possible effect size: The standardized mean difference

C

.
s =H —H

i
Oi

when
YijT - N(/uiTvo—iz); J =1,2,...,n-|-i
Yijc - N(‘uicyo_iz); j =12,..,n

(Normand, 1999, states the above without subscript i)
NTNU
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Estimator for ¢ (denoted Hedges’ g):

S2
Var(h) = [1+1)+5‘
nTi nCi 2(nTI + nCi)

where é:iz is the sample estimate of 5.
®NTNU,
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p-values as outcome

Many methods exist for combining p;, Py, .., Py
(Cooper and Hedges (1994) list 16 methods )

Much used (Darlington & Hayes, 2000):
The Stouffer and the Fisher method

Under H,, under quite general conditions,
p; is (approximately) uniformly distributed on (0,1)

.
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The Stouffer (1949) method:
Compute the z-values corresponding to the p-values:
z,=®7(p,) ~ N(0,2) under Ho

L,+2,+..+7

VK

Combined p-value: p = ®(z)

Combined z-value: z = ~N(0,1) under Ho

Example (Darlington & Hayes, 2000):
p-values .159, .133, .111, .092
z-values -.999, -1.112. -1.221, -1.329
combined z=-2.330, combined p=0.010
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The Fisher (1932) method:

A low value of p,p,-...- p, or equivalently,

log(p,p, - )=, ,log(p).
is taken as evidence against Ho

Under Ho, —23"" log(p,) ~ 7%

Example:
p-values .159, .133, .111, .092
2 = 16.881, df= 2*4=8

Fisher p:0031 er1N U

Publication bias:
File-Drawer (Fail-Safe) numbers

Researchers may have unpublished, not
significant results “in their file-drawers”

How many unknown studies (Ngg ,) with
average z=0 need to be added to the known
N to make the outcome of Stouffer’s test not
significant at level a? (Rosenthal, 1979)

.
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Sum of Ng , terms

N ‘ ,»\ N 2
Z,N—i:1 iR <Z,, O Ng,> [—Zil Zi] -N
FS,a +

Example (cont’d)
N=4, combined p=0.010,

combined z=z,.0010 = -2.330, Y.z, = ~2.330:/4 = —4.660

—4.660
1.96

2
j —4=1.65 dvs N g95=2.

N FS,0.05 2 (
U

but:

Combining p-values gives little insight in
effect size and its direction.

.
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Sources of variation in meta-analysis

« Sampling error may vary between studies. Varying
sample size.

» Study-level characteristics may vary (for example for-
profit vs not-for-profit hostpitals)

* Inter-study variation (random effects model)

.
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Y, = summary statistic from study no i
(for example treatment effect)

Approximately normally distributed
Fixed effect model:

Y, ~N(8,s7) fori=12,..k

where @is the mean treatment effect (same in all studies)

NTNU NTNU
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Random-effects model 6~N(0,7%)

Similar to:
- multi level model
- hierarchical model
- mixed effect model

Yi |9i'si2 - N(gi’siz)

where @, is the study specific mean drawn from a
superpopulation with hyperparameters @ and 7?2,

00,7 ~N(9,7%)
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Fig. 4. Random effect model.

s x

Unconditional distribution of Y;:
Y, ~N(,s” +7%)

where s;? and 7 are within-study and between
study variations.
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The distribution of the study-specific effect &,

conditional on the observed data and the
hyperparameters, is

6,1 (Y,.Y,),0.7" ~ N(BO+(1-B)Y, 5’ (1~ B))

[R]
2

where B, = % is the shrinkage factor for the i’th study

.+ T
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Fixed-effect model:

Maximum likelihood estimator for common mean

if 52 is known:
k
LYWy, 1

Oye ~N (9,(zlewi )j

i

Test for homogeneity of study means:
Ho: 6 =6,=..=6,
Hj: At least two are different

Under Hy, for large sample sizes,

k ~
QW = Zi=1Wi (Yi _HMLE)Z - sz,l

i

Random-effects model:

Maximum likelihood estimator for common mean
if 7% was known:

z :(:1Wi ()8 1

with W,() =

> W)

Usually z2is unknown.
Two common estimation methods are
- REML (Restricted Maximum Likelihood)

é(r)MLE =

- Bayesian
2L

REML (Restricted Maximum Likelihood)

» Apply linear functions K’y such that K’y contains
none of the fixed effects.

¢ Estimate the random effects (variance parameters)
by applying ML to K'y.
* For fixed effects, REML = ML.

i

Example:
When X,, X,,..., X, independent N (x,5°)

13 Y
O_REML_(n_l)iZ:l:(xi X)7,

i

REML or ML?

« (Diggle & al, 2002, p 69).
— REML estimators should be less biased
¢ (McCulloch and Searle, 2001, p 177-178)
— A growing preference for REML in mixed models
— For balanced and normal data, REML solutions
are minimal variance unbiased.
— REML for unbalanced data sets yield no clean
algebraic results

— REML estimators seem to be less sensitive to
outliers in the data

i




REML:
Estimates of @ and 72 may be found as solutions to

z:(:lwiz(z’:R)(% (Y; _éR)z _Sizj

T =
" W)
S WY, ) 1
O ==——— with w (7)) =———=
z,zlwi('[R) S 7R
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Estimator for 6, (empirical Bayes):

2
OF = BFd, +(1-BYY, where BF =— 1
s +7,
NTNU |

Full Bayesian approach:

6,7* are regarded as random variables
with one realization

For example
6~ N(0,a%) and r2 ~ gamma(c,d)

The hyperparameters (a,c,d) are specified
a priori, not estimated from data o
NTNU
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Mantel-Haenzel methods for 2x2 tables

Rosner, Section 13.5
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K tables:

outcome
Yes No
dj bi
Group . i
i i

i

Mantel-Haenzel test for conditional independence.

Under Hy, in table no i, conditional on the row
and column sums, a; is hypergeometric distributed
(as in Fisher’s exact test), with mean and variance

_ (ai +bi)(ai +Ci)
n;
Vo= (ai +bi)(ci +di)(ai +Ci)(bi +di)
" niz(ni _l)

E.

i

The (Cochran-)Mantel-Haenzel test for conditional independence
Null hypotheses: The common OR=1:

_ 2
Ton =% ~x under Ho

where

o=o0 =

LM~

a,
@ +b)@+c)
r]I
+b)(c; +d,)(a +¢)(b +d,)
ni2 (ni _1)

E E =

I
.[\4’r

(a

D i 1M

V. =

M=

V=

IN

.
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Rosner Eq 13.14 p 653 uses a continuity correction,
as proposed by Mantel & Haenzel (1959).

, _(O-E|-05)°
MH — V

This approximates an exact conditional test,
but tends to be conservative (Agresti 2002)

.
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The Mantel-Haenzel estimator for the common odds ratio:
Rosner, eqn 13.15 p 655

k

ZLdi
~ = n,
ORwi =% b

i=1

.
E———

Confidence interval for common OR (Rosner eqn 13.16)

exp[ln GRMH + zl,a,legar(ln éRMH )}

where

.
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Tests for homogeneity of odds ratios:

* Strata:

— Woolf method, Rosner eqn 13.17,

— Breslow-Day method (SPSS, StatXact)
* Meta-analysis:

— Rosner eqn 13.40

.
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Example Doll and Hill (1950),
Rosner exercise 13.9 - 13.15

Men: smoke | non- | total
smoke

lung cancer | 647 2 649

control 622 27 649

total 1269 |29 1298

Women smoke | non- | total
smoke

lung cancer | 41 19 60

control 28 32 60

total 69 51 120

.
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Men and women separately:

estimate | 95% c.i.
Men 14.1
Women | 2.47
exact StatXact
estimate | 95% c.i. p-value
Men 14.1 35t0122 | 1.3E-6
Women | 2.47 1.1t05.6 |0.026

p-value
3.3t059 | 2.7E-6
12t05.2 |0.017

Test for homogeneity of OR:
Breslow & Day statistic = 5.21, df=1, p=0.022

MH estimate for common OR: 4.52
95% c.i.: 2.42 t0 8.47

.
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Logistic regression — an alternative to
Mantel Haenzel methods.

 Strata (or study) as categorical covariate (or
coded with k-1 indicator variables)

» Approximately same results as Mantel-
Haenzel methods.

.
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