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CHAPTER 1

Introduction

1.1 WHY THIS BOOK?

Diagnostic tests play an important role in medical care and contribute signifi-
cantly to health care costs (Epstein, Begg, and McNeil, 1986), yet the quality of
diagnostic test studies has been poor (Begg, 1987). Reid, Lachs, and Feinstein
(1995) reviewed articles on diagnostic tests that were published between 1978
and 1993 and reported many errors in design and analysis. These errors have fos-
tered distrust in the conclusions of diagnostic test studies and have contributed to
misunderstandings in the selection and interpretation of diagnostic tests.

Some examples of common errors in diagnostic test studies help illustrate the
problem. One common error involves how the diagnostic tests are interpreted.
Many investigators of new diagnostic tests attempt to develop criteria for inter-
preting such tests based only on the test results of healthy volunteers. For exam-
ple, for a new test to detect pancreatitis, investigators might measure the amount
of a certain enzyme in healthy volunteers. A typical decision criterion, or cui-
point, is three standard deviations (SDs) from the mean. Patients with an enzyme
level of three SDs below the mean of healthy volunteers are labeled posizive for
pancreatitis; patients with an enzyme level above this cutpoint are labeled nega-
tive. In proposing such a criterion, investigators fail to recognize

L. the relevance of natural distributions (i.e., are they Gaussian [normal]?);

2. the amount of potential overlap with test results from patients with the
condition;

3. the clinical significance of diagnostic errors, both attributed to falsely
labeling a patient without the condition as positive and a patient with
the condition as negative; and

4. the poor generalization of results based on healthy volunteers.

In Chapter 2, we discuss factors involved in determining optimal cutpoints for
diagnostic tests; in Chapter 4, we discuss methods of finding optimal cutpoints
and estimating diagnostic errors associated with them.
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Another common error in diagnostic test studies is the notion that mak-
ing a rigorous assessment of a patient’s true condition—with the exclusion of
patients for whom a less rigorous assessment was made—allows for a scientifi-
cally sound study. An example comes from literature on the use of ventilation-
perfusion lung scans for diagnosing pulmonary emboli. The ventilation-perfu-
sion lung scan is a noninvasive test used to screen high-risk patients for pul-
monary emboli; its accuracy in various populations is unknown. Pulmonary
angiography, on the other hand, is a highly accurate test for diagnosing pul-
monary emboli, but it is invasive. In a study that assesses the accuracy of
ventilation-perfusion lung scans, the study sample usually consists of patients
who have undergone both a ventilation-perfusion lung scan and a pulmonary
angiogram, with the angiogram serving as the reference for estimating accu-
racy. (See Chapter 2 for the definition and some examples of gold standards.)
Patients who undergo a ventilation-perfusion lung scan but not an angiogram
would be excluded from such a study. This study design can lead to serious
errors in test accuracy estimates. These errors occur because the study sample is
not truly representative of the patient population undergoing ventilation-perfu-
sion lung scans—rather patients with positive scans are often recommended for
angiograms and patients with negative scans are often not sent for angiograms
because of the unnecessary risks. In Chapter 3, we discuss workup bias and its
most common form, verification bias, as well as the strategies to avoid them.
In Chapter 10, we present statistical methods developed specifically to correct
for verification bias.

Another error involves problems with agreement studies, in which investi-
gators often draw conclusions about a new test’s diagnostic capabilities based
on how often it agrees with a conventional test. For example, digital mam-
mography, a new method of acquiring images of the breast for screening and
diagnosis, has many advantages over conventional film mammography, includ-
ing easy storage and transfer of images. In a study comparing these two tests
on a sample of patients, if the results agree often, we will be encouraged by
the new test. But what if the digital and film results do not agree often? It is
incorrect for us to conclude that digital mammography has inferior accuracy.
Clearly, if digital mammography has better accuracy than film mammography,
then the two tests will not agree. Similarly, the two tests can have the same
accuracy but make mistakes on different patients, resulting in poor agreement.
A more valid approach to assessing a new test’s diagnostic worth is to compare
both tests against the true diagnoses of the patients to estimate and compare
the accuracy of both tests. Assessment of diagnostic accuracy is usually more
difficult than assessment of agreement, but it is a more relevant, valid approach
(Zweig and Campbell, 1993). In Chapter 5, we present methods for comparing
the accuracy of two tests when the true diagnoses of the patients are known;
in Chapter 11, we present methods for comparing the accuracy of two tests
when the true diagnoses are unknown.

There is no question that studies of diagnostic test accuracy are challenging
to design and require specialized statistical methods for their analysis. There
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are few good references and no comprehensive sources of information on how
to design and analyze diagnostic test studies. This book fulfills this need. In
it, we present and illustrate concepts and methods for designing, analyzing,
interpreting, and reporting studies of the diagnostic test accuracy. In Part I
(Chapters 2-7), we define various measures of diagnostic accuracy, describe
strategies for designing diagnostic accuracy studies, and present basic statistical
methods for estimating and comparing test accuracies, calculating sample sizes,
and synthesizing literature for meta-analysis. In Part II (Chapters 8-12), we
present more advanced statistical methods of describing a test’s accuracy when
patient characteristics affected it, of analyzing multireader studies and studies
with verification bias or imperfect gold standards, and of performing meta-
analyses.

1.2 WHAT IS DIAGNOSTIC ACCURACY?

A diagnostic test has two purposes (Sox, Jr. et al., 1989): (1) to provide reliable
information about the patient’s condition and (2) to influence the health care
provider’s plan for managing the patient. McNeil and Adelstein (1976) added
a third possible purpose: to understand disease mechanisms and natural history
through research (e.g., the repeated testing of patients with chronic conditions).
A test can serve these purposes only if the health care provider knows how
to interpret it. This information is acquired through an assessment of the test’s
diagnostic accuracy, which is simply the ability of a test to discriminate among
alternative states of health (Zweig and Campbell, 1993). Although frequently
there are more than two states of health, the clinical question can often be
appropriately dichotomized (e.g., the presence or absence of Parkinson’s dis-
ease or the presence or absence of an invasive carcinoma). In this book, we
consider these types of situations (i.e., the binary health states).

In assessing the performance of the diagnostic test, we want to know if
the test results differ for the two health states. If they do not differ, then the
test has negligible accuracy; if they do not overlap for the two health states,
then the test has perfect accuracy. Most test accuracies fall between these two
extremes. The most important error to avoid is the assumption that a test result
1s a true representation of the patient’s condition (Sox, Jr. et al., 1989). Most
diagnostic information is imperfect; it may influence the health care provider’s
thinking, but uncertainty will remain about the patient’s true condition. If the
test is negative for the condition, should the health care provider assume that
the patient is disease-free and thus send him or her home? If the test is positive
for the condition, should the health care provider assume the patient has the
condition and thus begin treatment? And if the test result requires interpretation
by a trained reader (e.g., a radiologist), should the health care provider get a
second opinion of the interpretation?

To answer these critical questions, the health care provider needs to have
information on the test’s absolute and relative capabilities and an understanding
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of the complex interactions between the test and the trained readers (Beam
et al., 1992). The health care provider must ask, How does the test perform
among patients with the condition (i.e., the test’s sensitivity)? How does the test
perform among patients without the condition (i.e., the test’s specificity)? Does
the test serve to replace an older test, or should multiple tests be performed?
If multiple tests are performed, how should they be executed (i.e., sequentially
or in parallel)? How reproducible are interpretations by different readers?

Radiographic image quality is often confused with diagnostic accuracy. As
noted by Lusted (1971), an image can reproduce the shape and texture of tis-
sues most faithfully from a physical standpoint, but it may not contain useful
diagnostic information. Fryback and Thornbury (1991) described a working
model for assessing the efficacy of diagnostic tests in medicine. The model
delineates image quality, diagnostic accuracy, treatment decisions, and patient
outcome and describes how these conditions relate to the assessment of a diag-
nostic test. Expanding upon other works (Cochrane, 1972; Thornbury, Fryback,
and Edwards, 1975; McNeil and Adelstein, 1976; Fineberg, 1978), Fryback and
Thornbury (1991) proposed the following 6-level hierarchical model. Level 1,
at the bottom, is technical efficacy, which is measured by such features as
image resolution and sharpness for radiographic tests and optimal sampling
times and doses for diagnostic marker tests; level 2 is diagnostic accuracy
efficacy, that is, the sensitivity, specificity, and receiver-operating characteris-
tic (ROC) curve; level 3 is diagnostic thinking efficacy, which can be mea-
sured, for example, by the difference in the clinician’s estimated probability
of a diagnostic before versus after the test results are known; level 4 is thera-
peutic efficacy, which can be measured by the percentage of time that therapy
planned before the diagnostic test is altered by the results of the test; level 5
is patient outcome efficacy, which can be defined, for example, by the number
of deaths prevented, or a change in the quality life because of, the test infor-
mation; and level 6, at the top, is societal efficacy, which is often described
by the cosi-effectiveness of the test as measured from a societal perspective.
A key feature of this model is that for a diagnostic test to be efficacious at a
higher level, it must be efficacious at all lower levels. The reverse is not true;
that is, the fact that a test can be efficacious at one level does not guarantee
that it will be efficacious at higher levels. In this book, we deal exclusively
with the assessment of diagnostic accuracy efficacy (level 2 of the hierarchical
model), recognizing that it is only one step in the complete assessment of a
diagnostic test’s usefulness.

1.3 LANDMARKS IN STATISTICAL METHODS OF DIAGNOSTIC
MEDICINE

In 1971, Lusted wrote a highly influential article in the journal Science in which
he postulated that to measure the worth of a diagnostic test, one must measure
the performance of the observers with the test. Lusted argued that ROC curves
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provide an ideal means of studying observer performance. Lusted was writing
about radiographic tests, but ROC curves are now used to assess diagnostic
test accuracy in many disciplines of medicine.

An ROC curve is a plot of a diagnostic test’s sensitivity (i.e., the test’s ability
to detect the condition of interest) versus its false-positive rate (i.e., the test’s
inability to recognize normal anatomy and physiology as normal). The curve
illustrates how different criteria for interpreting a test produce different values
for the test’s false-positive rate and sensitivity.

ROC curves and their analyses are based on statistical decision theory;
they were originally developed for electronic signal-detection theory (Peterson,
Birdsall, and Fox, 1954; Swets and Pickett, 1982). They have been applied in
many medical and nonmedical endeavors, including studies of human percep-
tion and decision making (Green and Swets, 1966), industrial quality control
(Drury and Fox, 1975), and military monitoring (Swets, 1977).

Lusted (1971) indicated that in diagnostic medicine, as in electronic
signal-detection theory, a distinction must be made between the criteria that
an observer uses for deciding whether a condition is present or absent and the
observer’s abilities the sensory and cognitive attributes used for interpreting
the test results) for detecting the condition. ROC curves can be used to make
this distinction. Lusted gave the following example: Suppose that the six points
in Fig. 1.1 represent the diagnoses of six different physicians. The physicians
have identical sensory and cognitive abilities for detecting tuberculosis on a
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Figure 1.1 Lusted’s (1971) example of tuberculosis (TB) detection.
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chest radiograph, but they have different criteria for which densities actually
should be called tuberculosis. The upper points on the curve represent indi-
viduals with more liberal decision criteria (i.e., the low-density nodules are
called positive), whereas the lower points on the curve represent individuals
with more stringent criteria (i.e., only high-density nodules are called positive).
In diagnostic medicine, we are interested in measuring the observer’s abilities
for interpreting test results rather than his or her criteria for decisions.

Swets and Pickett (1982) noted two other key features of ROC curves that
make them ideal for studying diagnostic tests. First, the curves display all pos-
sible cutpoints and thus supply estimates of the frequency of various outcomes
(i.e., true positives, true negatives, false positives, and false negatives) at each
cutpoint. (See Chapter 2 for definitions.) Second, the curves allow the use of
previous probabilities of the condition, as well as calculations of the costs and
benefits of correct and incorrect decisions, to determine the best cutpoint for
a given test in a given setting. (See Chapters 2 and 4.)

Green and Swets (1966) were first to use the Gaussian model for estimat-
ing the ROC curve. They assumed that the various sensory events (i.e., test
results) could be mapped on a single line. The numerical value of an observed
event (call it T') affects the observer’s confidence about whether the condition
is present or absent. They also assumed that a cutpoint c is present so that if
T < ¢, the observer will choose the hypothesis that the condition is absent,
whereas if T' > c, the observer will choose the hypothesis that the condition is
present. In addition, they assumed that the distribution of 7' is Gaussian under
each hypothesis. Following these assumptions, Dorfman and Alf, Jr. (1968,
1969) developed maximum-likelihood estimates (MLEs) for the parameters of
a binormal (i.e., two Gaussian distributions, usually overlapping) ROC curve,
along with procedures for obtaining the variance—covariance matrix and confi-
dence intervals. (See Chapter 4.) Also, they wrote a FORTRAN program called
RSCORE to perform the MLE.

A decade later, Metz (1978) and Swets and Pickett (1982) described, in prac-
tical terms, how to design ROC curve studies and analyze the data, with par-
ticular emphasis on the area under the ROC curve as the measure of test accu-
racy. The MLE software RSCORE was modified and extended by Metz and
colleagues. The FORTRAN programs—including ROCFIT, LABROC, COR-
ROC, and CLABROC—written by Metz and colleagues are today commonly
used to estimate and compare ROC curves based on the binormal model.

A pivotal paper was the article written by Hanley and McNeil (1982), which
provided a computationally simple method of estimating the area under the
ROC curve without any assumptions about the distribution of the test results.
The paper also noted an interesting equivalence, first described by Bamber
(1975)—that the quantity of area under the ROC curve is the same as that
estimated by the Wilcoxon 2-sample test, a well-known nonparametric test
statistic. This equivalence led to a simple interpretation for the area under the
ROC curve, which is now used extensively. Another key development in the
Hanley and McNeil (1982) article was a method of calculating sample size for
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studies using the ROC area. Other nonparametric methods for estimating and
comparing ROC curves have since been published (see Chapters 4 and 5), and
several methods for sample size estimation now exist (see Chapter 6).

Swets and Pickett (1982) were the first to tackle the analysis of multireader
studies, where typically several observers interpret the test results of the same
sample of patients. They identified several sources of variability and correla-
tions in multireader studies and proposed a method for estimating and compar-
ing the test accuracy for multireader studies by estimating the different vari-
ance components and correlations. Several methods for analyzing multireader
studies are now available. (See Chapter 9.)

Tosteson and Begg (1988) were the first to describe how general regression
models for ordinal data can be used to estimate ROC curves. These regression
models could be used to understand the effect of covariates (e.g., a patient’s
age and gender) on the test’s accuracy. Since their 1988 article, new regression
approaches and extensions of their basic model have been developed. (See
Chapters 8 and 9.)

McClish (1989), recognizing that the ROC curve area is a global measure
of a test’s accuracy because it includes the entire range of false-positive rates
from 0.0 to 1.0, developed parametric methods for estimating and comparing
the partial areas under the ROC curve. These methods are based on a binormal
model and parallel the commonly used MLEs of the area under the total ROC
curve. (See Chapters 2, 4, and 5.) -

Parallel to these landmarks in analyzing diagnostic accuracy data, Ransohoff
and Feinstein (1978) were investigating issues of study design. They identified
two common problems that can occur in sensitivity-and-specificity estimates of
a diagnostic test: First, unless a broad spectrum of patients is chosen both with
and without the condition, the study may yield falsely high sensitivity-and-
specificity estimates, known as spectrum bias, and second, unless the interpre-
tation of the test and the establishment of the true diagnosis are done indepen-
dently, bias can falsely elevate the test’s estimated accuracy, a problem known
as workup bias. They illustrated these problems with several real examples of
diagnostic tests that initially were found to be valuable in biased studies but
later found to be useless. Since Ransohoff and Feinstein’s investigations, many
other problems have been identified in diagnostic test accuracy studies. (See
Chapter 3.)

Many statistical methods that correct biased data were developed shortly
after these investigations. For instance, in 1980 Hui and Walter proposed a
method of estimating the sensitivity and specificity of a diagnostic test when
the standard test against which it is compared has unknown error rates, a con-
dition known as imperfect gold standard bias, and in 1983 Begg and Greenes
developed a method to remove the effect of verification bias on estimates of
sensitivity and specificity. From these articles evolved many other approaches
to solving for imperfect gold standard bias (see Chapter 11) and verification
bias (see Chapter 10).

Statistical methods for synthesizing diagnostic test accuracy studies (i.e.,
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meta-analysis) have been developed more recently. Summary receiver-oper-
ating characteristic (SROC) curves were proposed by Littenberg, Moses, and
Rabinowitz (1990) as a means of summarizing a test’s sensitivity and speci-
ficity from multiple studies without the assumption (usually invalid; see Chap-
ter 7) that all of the studies used the same cutpoint. New methods based on
the SROC curve have since been developed. (See Chapter 12.)

1.4 SOFTWARE

Software to implement many of the statistical methods discussed in this book
is available free of charge. Some of this software is in the format of FORTRAN
programs; others are in the form of SAS macros (SAS Institute, Cary, North
Carolina, USA). The authors have prepared a Web site that contains, links, or
cites useful software relevant to statistical methods for diagnostic medicine; it
is http://www.wiley.com/statistics and will be maintained and updated peri-
odically for at least five years after this book’s publication date.

1.5 TOPICS NOT COVERED IN THIS BOOK

Although this book covers the main themes in statistical methods of diagnostic
medicine, it does not cover several related topics, as discussed in the following
paragraphs.

In this book we discuss how ROC curves can be used to describe and com-
pare the accuracies of diagnostic tests. An ROC curve and, in particular, an
ROC area are also used to assess the predictive ability of a fitted model. For
example, in SAS’s PROC LOGISTIC, the c-statistic is reported; it is equiva-
lent to the nonparameitric estimate of the area under the ROC curve and used in
PROC LOGISTIC to describe how well a fitted model discriminates between
the two groups in the model. For more information on this particular use of
ROC curves, see Harrell, Jr., Lee, and Mark (1996) and Hosmer and Lemeshow
(2000).

Decision analysis, cost-effectiveness analysis, and cost-benefit analysis are
methods commonly used to quantify the long-term, or downstream, effects of
a test on the patient and society. In Chapters 2 and 4, we discuss how these
methods can be applied to find the optimal cutpoint on the ROC curve. Descrip-
tion of how to perform these methods, however, is beyond the scope of this
book. There are many excellent references on these topics, including Pauker
and Kassirer (1975); Weinstein et al. (1980, 1996); Russell et al. (1996); and
Gold et al. (1996).

We focus mainly on the assessment of diagnostic tests. However, many tests
are used for screening asymptomatic people and for surveillance of patients
with known disease. Many of the methods described in this book are appli-
cable to these tests, but there are many issues specific to these applications
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that are not covered here. For these issues, see, for example, Morrison (1992),
Murtaugh (1995), and Black and Welch (1997).

Most of the methods we present for estimation and hypothesis testing are
from a frequentist perspective. Bayesian methods can also be used, whereby
one incorporates into the assessment of the diagnostic test some previously
acquired information or expert opinion about a test’s characteristics or infor-
mation about the patient or population. Examples of Bayesian methods used in
diagnostic testing are found in Hellmich et al. (1988); Gatsonis (1995); Joseph,
Gyorkos, and Coupal (1995); Peng and Hall (1996); and O’Malley et al. (2001).

We present methods for a situation in which the condition status of a patient
can be described by one of two states (e.g., Parkinson’s disease—present or
absent). In some situations, however, there are more than two truth states (e.g.,
chest radiograph findings of pneumothorax, interstitial disease, nodules, or nor-
mal). Some relevant references on the assessment of diagnostic test accuracy
for multiple truth states are found in Steinbach and Richter (1987); Rockette
(1994); Mossman (1999); and Obuchowski, Lieber, and Powell (2001).

We do not discuss regulatory requirements for the assessment of diagnostic
tests. Such requirements can be found at Web sites maintained by the appro-
priate regulatory agency.

Finally, when multiple diagnostic tests are performed on a patient, one may
want to combine the information from the tests to make the best possible diag-
nosis. See, for example, Pepe and Thompson (2000) for various methods for
combining the results of tests to optimize diagnostic accuracy.

1.6 SUMMARY

Health care providers need to understand how to select and interpret diagnos-
tic tests. However, much of the current literature on diagnostic test assess-
ment is of poor quality, leading to misunderstanding and distrust. Consider-
able research has been done on methods for design, analysis, and interpretation
of diagnostic test accuracy. This book provides a comprehensive, illustrative
approach to these methods.

We note that statistical methods for the assessment of diagnostic tests are
developed, modified, and extended constantly. Like the reader, the authors look
forward to many advances in this field that extend beyond the coverage of this
book.
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CHAPTER 2

Measures of Diagnostic Accuracy

In this chapter, we describe several measures of the accuracy of diagnostic
tests. In Sections 2.1-2.9, we discuss measures of intrinsic accuracy, a test’s
abilities to correctly detect a condition when it is actually present and to cor-
rectly rule out a condition when it is truly absent. These attributes are funda-
mental and inherent to diagnostic tests themselves.

The intrinsic accuracy of a test is measured by comparing the test results to the
true condition status of the patient. We assume that the true condition status is one
of two mutually exclusive states: “‘the condition is present” or “the condition is
absent.” Some examples are the presence versus the absence of Parkinson’s dis-
case, the presence of a malignant versus a benign tumor, and the presence of one
versus more than one tumor. We determine the true condition status by means of
a gold standard. A gold standard is a source of information completely different
from the test or tests under evaluation and which tells us the true condition status
of the patient. Different gold standards are used for different tests and applica-
tions; some common examples are autopsy reports, surgery findings, pathology
results from biopsy specimens, and the results of other diagnostic tests that have
perfect or nearly perfect accuracy. In Chapter 3, we discuss more about the selec-
tion of a gold standard; in Chapter 11, we present statistical methods for measur-
ing diagnostic accuracy without a gold standard.

Once a test is shown to have some level of intrinsic accuracy, the role of
that test in particular clinical situations must be evaluated. At this stage, we
consider not only the intrinsic accuracy of the test but also the prevalence and
nature of the disease, the patient characteristics, and the consequences of the
test’s misdiagnoses. In Sections 2.10 and 2.11, we discuss the application of
diagnostic tests in clinical scenarios.

2.1 SENSITIVITY AND SPECIFICITY

Two basic measures of diagnostic accuracy are sensitivity and specificity. Their
definitions are best illustrated by a contingency table with 2 rows and 2

15
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columns, or decision matrix, where the rows summarize the data according
to the true condition status of the patients and the columns summarize the
test results. We denote the true condition status by the indicator variable D,
where D = 1 if the condition is present and O if the condition is absent. Test
results indicating the condition’s presence are called positive; those indicating
its absence, negative. We denote positive test results as 7' = 1, negative test
results as 7 = 0. Table 2.1 has such characteristics; it is called a count table
because it indicates the number of patients in various categories. The total num-
ber of patients with and without the condition is, respectively, n; and no; the
total number of patients with the condition who test positive and negative is,
respectively, s; and so; and the total number of patients without the condition
who test positive and negative is, respectively, r; and ro. The total number of
patients in the study group, N, is expressed as N = sy + sp + 1y + ro.

The sensitivity (Se) of a test is its ability to detect the condition when it is
present. We write sensitivity as Se = P(T = 1|D = 1), which is read, “sensitivity
(Se) is the probability (P) that the test result is positive (7 = 1), given that the
condition is present (D = 1).” Among the n; patients with the condition, s test
positive; thus Se = s,/n;.

The specificity (Sp) of a test is its ability to exclude the condition in patients
without the condition. We write specificity as Sp = P(I' = 0|D = 0), which
is read, “specificity (Sp) is the probability (P) that the test result is negative
(T = 0), given that the condition is absent (D = 0).” Among ng patients without
the condition, ry test negative; thus Sp = ro/no.

Count data can be summarized by probabilities, as shown in Table 2.2. This
table emphasizes that sensitivity and specificity are computed from different sub-
samples of patients, that is, the subsamples of patients with and without the con-
dition. Note that the sum of the two probabilities in the top row (D = 1) is one
and, similarly, the sum of the two probabilities in the bottom row (D = 0) is one.
The probability that the test will be positive in a patient with the condition (i.e.,
the sensitivity) is given in the (D =1, T'= 1) cell of the table.

Another way that diagnostic accuracy is commonly described emphasizes
the consequences associated with the test results. In this use, sensitivity is the
true-positive fraction (TPF) or rate (TPR); s; is the number of true positives
(TPs). Specificity is the true-negative fraction (TINF) or rate (TNR); rg is the

Table 2.1 A Basic 2 x 2 Count Table

Test Result

True Condition Status Positive (I'= 1) Negative (T = 0) Total
Present (D = 1) S1 S0 ni
Absent (D = 0) ry ro ng

Total mi g N




SENSITIVITY AND SPECIFICITY 17

Table 2.2 A 2 x 2 Probability Table

Test Result

True Condition Status Positive (T = 1) Negative (T = 0) Total
Present (D = 1) Se =s1/m FNR = 50/n1 1.0
Absent (D = 0) FPR = ry/ng Sp = ro/ng 1.0

number of true negatives (TNs). The “true” positives and negatives are, respec-
tively, s; and ro, because the diagnostic test indicates the correct diagnosis. In
contrast, so is the number of false negatives (FNs), and s¢/n; is the false-neg-
ative fraction (FNF) or rate (FNR). Here, the test falsely indicates the absence
of the condition in a patient who truly has the condition. False-negative results
cause harm by delaying treatment and providing false reassurance. Similarly,
r, is the number of false positives (FPs), and r,/ng is the false-positive frac-
tion (FPF) or rate (FPR). False detection of the condition leads to unnecessary,
perhaps risky confirmatory tests, as well as incorrect treatment and false la-
beling of patients. An exercise for the reader is to verify that TPR + FNR = 1
and TNR + FPR = 1.

To illustrate the foregoing calculations, consider as an example a mammo-
grapher’s diagnoses of 60 patients presenting for breast cancer screening. (See
Table 2.3.) These data were part of a 7-reader retrospective study to investi-
gate the accuracy of screening mammography (Powell et al., 1999). The study
sample consisted of 30 patients with pathology-proven cancer and 30 patients
with normal mammograms for two consecutive years. The mammogram was
considered positive if the mammographer recommended additional diagnos-
tic workup for the patient. Of the 30 patients with breast cancer, 29 tested
positive—that is, they were correctly asked to return for additional workups.
Thus there were 29 TPs and 1 FN; the sensitivity was 29/30 = 0.967. Of the 30
patients without breast cancer, 11 tested negative (TNs). The specificity was
11/30, or 0.367. The FPR was 19/30 = 0.633, or 1 — the specificity.

The definition of positive and negative test results as well as the condition
of interest must be clear, because a positive finding may correspond to the

Table 2.3 Mammogram Results of 30 Patients With and
30 Patients Without Breast Cancer

Test Result

Cancer Status Positive Negative Total
Present 29 ] 30
Absent 19 11 30

Total 48 12 60
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presence or absence of a condition, depending on the clinical application. For
example, in a study of lung disease (Remer et al., 2000), patients with detected
adrenal adenomas were labeled positive and patients with detected lung metas-
tases were labeled negative. The fact that patients with adrenal adenomas are
eligible for lung cancer surgery, whereas patients without this condition (i.e.,
the patients with lung metastases) are not, motivated the authors of the study
to refer to the detection of an adenoma as a positive finding.

Many diagnostic tests yield a numeric measurement as a result rather than a
binary result (i.e., positive or negative). Consider a digital-imaging algorithm to
identify patients whose implanted artificial heart valves have fractured (Powell
et al., 1996). One measure used to distinguish fractured valves from intact
valves is the width of the gap between the valve strut legs. The larger the gap,
the likelier the valve has fractured. Table 2.4 lists the gap measurements of 20
patients who have undergone elective surgery for valve replacement; Fig. 2.1
illustrates the data. At surgery, 10 patients were found to have fractured valves
and 10 were found to have intact valves; the gap values ranged from 0.03
to 0.58 for patients with fractured valves, 0.0 to 0.13 for patients with intact
valves. To describe the sensitivity and specificity of the imaging technique, we
choose a value of, say, 0.05, in which case the patients with gap values greater
than 0.05 are labeled positive and patients with gap values less than or equal
to 0.05 are labeled negative. The corresponding sensitivity and specificity are,
respectively, 0.80 and 0.70.

In this example, we arbitrarily chose a gap value of 0.05 to define the test
results as either positive or negative. The test result of 0.05 is called a decision
threshold, the test result used as a cutoff to define positive and negative test
results and, subsequently, to define sensitivity and specificity. We could have
used any gap value as a decision threshold. Sensitivity and specificity would
have been, however, affected by our choice.

Table 2.4 Gap Measurements of 10 Patients With
and 10 Patients Without Fractured Heart Valves

Fractured Intact
0.58 0.13
0.41 0.13
0.18 0.07
0.15 0.05
0.15 0.03
0.10 0.03
0.07 0.03
0.07 0.00
0.05 0.00

0.03 0.00
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Figure 2.1 A histogram of gap measurements of patients with and without fractured heart
valves.

Table 2.5 summarizes the sensitivity and specificity corresponding to sev-
eral possible decision thresholds. If we choose a larger gap value of, say, 0.13,
the sensitivity will decrease to 0.50 and the specificity will increase to 1.0. If,
however, we choose 0.03, the sensitivity will increase to 0.90 and the speci-
ficity will decrease to 0.60. This example illustrates that the sensitivity and
specificity of a test are inherently linked—as one increases, the other decreases.
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Table 2.5 FEstimates of Se and Sp From the Heart Valve-Imaging

Study
Definition of + Test Se Sp FNR FPR
>0.58 0.0 1.0 1.0 0.0
>0.13 0.5 1.0 0.5 0.0
>0.07 0.6 0.8 0.4 0.2
>0.05 0.8 0.7 0.2 0.3
>0.03 0.9 0.6 0.1 0.4
>0.0 1.0 0.3 0.0 0.7
=20.0 1.0 0.0 0.0 1.0

Thus in describing a diagnostic test, both sensitivity and specificity must be
reported along with the corresponding decision threshold.

The gap measurement is an objective test result, calculated by a computer
algorithm. Other tests yield results that must be interpreted subjectively, such
as mammographic images for the detection of breast cancer or magnetic res-
onance (MR) images for the detection of multiple sclerosis. For these tests,
the observer establishes a decision threshold in his or her mind and uses that
threshold to label cases as positive or negative. The decision threshold that an
observer adopts depends on many factors, including his or her “style,” estimate
of the condition’s likelihood, and assessment of the consequences of misdiag-
noses (Metz, 1978).

We might ask the mammographer, whose diagnoses were presented in Table
2.3, to use a stricter decision threshold to increase the specificity. The mam-
mographer could reread the 60 cases, applying this new decision threshold, or,
alternatively, he or she could assign a confidence score to each case to reflect
his or her belief that the patient has the condition. In diagnostic radiology, two
confidence scales are popular: an ordinal (rating) scale, which categorizes con-
ditions as, for example, “definitely not present,” “probably not present,” “pos-
sibly present,” “probably present,” or “definitely present,” and as a 0-100%
scale, which describes the reader’s confidence in the presence of the condi-
tion; 0% is no confidence, 100% is complete confidence in the presence of the
condition. Certain tests have a specialized scale; for example, mammography
uses the following rating scale: “normal,” “benign,” “probably benign,” “sus-
picious,” and “malignant.” Table 2.6 summarizes the mammographer’s resulis
using this scale. If the mammographer uses a decision threshold at “suspicious”
so that only cases assigned as “suspicious” or “malignant” are called positive,
the corresponding sensitivity and specificity will be 0.767 and 0.733. (Note
that the results in Table 2.3 were generated by using a decision threshold at
“probably benign.”) Here again, we see that an increase in specificity (from
0.367 in Table 2.3 to 0.733) was offset by a decrease in sensitivity (from 0.967
in Table 2.3 to 0.767).

7% 46
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Table 2.6 Mammogram Results Using a 5-Category Scale

Test Result

Probably
Cancer Status Normal Benign Benign  Suspicious  Malignant  Total
Present 1 0 6 11 12 30
Absent 9 2 11 8 0 30

Sensitivity and specificity are measures of intrinsic diagnostic accuracy
because they are not affected by the prevalence of the condition. For example,
in computing sensitivity in Table 2.3, it did not matter whether there were 30
or 30,000 patients without cancer; sensitivity is computed from only the sub-
sample of patients with the condition, whereas specificity is computed from
only the subsample of patients without the condition. Table 2.7 presents the
test results of 3000 women—30 with cancer (as in Table 2.3) and 2970 with-
out cancer—for a prevalence of 1%. The sensitivity is 0.967; the specificity,
0.367. These values are identical to the estimates from Table 2.3, where the
prevalence was 50%. This property of sensitivity and specificity is important;
in practical terms, it means that the sensitivity and specificity estimated from
a study sample are applicable to other populations with different prevalence
rates.

Although not affected by the prevalence of the condition, the sensitivity
and specificity of some diagnostic tests are affected by the spectrum of dis-
ease. A disease’s range of clinical severity or anatomic extent constitutes its
spectrum. For example, large, palpable breast cancer tumors are easier to detect
than sparse, dispersed malignant calcifications; thus mammography has greater
sensitivity when it is applied to patients with advanced breast cancer. Similarly,
patient characteristics affect the sensitivity and specificity of some diagnostic
tests. Older women have fatty, less dense breasts than younger women, and
mammography is better able to detect lesions in fatty breasts. In Chapter 3,
we discuss more thoroughly the impact of the spectrum of disease and patient
characteristics.

Table 2.7 Mammogram Results of 3000 Women

Test Result

Cancer Status Positive Negative Total
Present 29 | 30
Absent 1881 1089 2970

Total 1910 1090 3000
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Some interesting analogies are noted between Table 2.1 and the types I and
II (or o and 3) error rates used in statistical hypothesis testing. The type I (o)
error rate is the probability of rejecting the null hypothesis when, in reality, the
null hypothesis is true. The type II (B) error rate is the probability of failing
to reject the null hypothesis when, in reality, the alternative hypothesis is true.
In the diagnostic testing situation, let us define the null (Hy) and alternative
(H,) hypotheses as follows:

Hy: The condition is not present
H,: The condition is present

Then, the type I error rate is analogous to the FPR and the type II error rate
is analogous to the FNR. Statistical power, that is, 1 — type II error rate, is
- analogous to sensitivity. In statistical hypothesis testing, it is standard to set
the type I error rate at 0.05 (5%). With diagnostic tests, however, the particular
clinical application dictates the allowable error rates. (See Section 2.11.)

2.2 COMBINED MEASURES OF SENSITIVITY AND
SPECIFICITY

It is often useful to summarize the accuracy of a test by a single number. For
example, when comparing two tests, it is easier to compare a single number
than to compare both the sensitivities and specificities of the two tests. There
are several measures that incorporate sensitivity and specificity into a single
index (accuracy, odds ratio, Youden’s index). We start with a popular measure
often referred to simply as accuracy, however, we refer to it more precisely
as the probability of a correct test result. From Table 2.1, the probability of a
correct test result is equal to (s +r¢)/N and constitutes the proportion of TPs
and TNs in the entire sample. This measure is easily verified as a weighted
average of sensitivity and specificity, with weights equal to the prevalence [that
is, P(D = 1)] and to the complement of prevalence [that is, P(D = 0)] as follows:

P(TP or TN) = (no. of correct decisions)/N = Se x P(D = 1)+ Sp x P(D = 0)

The strength of this measure of accuracy is in its simple computation. However,
this measure has many limitations, as illustrated by several examples. First,
consider an 1885 editorial by Gilbert in which he writes about the exiremely
high “accuracy” of a fellow meteorologist in predicting tornadoes. Gilbert
pointed out that because of the rarity of this meteorological event, high accu-
racy could be achieved simply by “calling” for “no tornado” every day.

As a second example, consider the mammography data in Tables 2.3 and
2.7. The sensitivity (0.907) and specificity (0.367) calculated from these two
tables are the same, but the prevalence is different. From Table 2.3, the prob-
ability of a correct test result is (29 + 11)/60, or 0.667; from Table 2.7, the
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probability of a correct test result is only 0.373. In Table 2.3, sensitivity and
specificity are given equal weight, because the prevalence is 50%; in Table
2.7, specificity is given much more weight, because the prevalence is very
low. This example illustrates that although sensitivity and specificity are mea-
sures of the intrinsic accuracy of a test, the probability of a correct test result
is not a measure of intrinsic accuracy.

Another limitation of the probability of a correct result is that it is calculated
based on only one decision threshold. However, there are many potential deci-
sion thresholds, and the clinical application should determine which of these
is relevant. This also represents a limitation of single pairs of sensitivity and
specificity.

Still another limitation of the probability of a correct result is that it treats
FP and FN results as if they were equally undesirable, but often this is not the
case (Zweig and Campbell, 1993). One might be tempted to use this measure
to compare two tests applied to the same population. Metz (1978) indicated
the problem with this use—that the two tests can have the same probabilities
of a correct result but different sensitivities and specificities. For example, test
A might have a sensitivity of 100% but a specificity of 0%; test B might have a
specificity of 100% but a sensitivity of 0%. If the prevalence of the condition
is 50%, both tests will yield the same probability of a correct result yet perform
differently, and patient management will differ radically.

We mention two other measures here because they are sometimes used in
meta-analyses of the accuracy of diagnostic tests. (See Chapter 12.) One is the
odds ratio, defined as the odds of a positive test result relative to a negative test
result among patients with the condition divided by the odds of a positive test
result relative to a negative test result among patients without the condition.
The odds ratio can be written as follows in terms of sensitivity and specificity:

Se/(1 —Se)  SexSp

Odds rafio =
SN T T Spy/sp ~ FNR < FPR

For the data in Tables 2.3 and 2.7, the odds ratio is the same: 16.99. An odds
ratio of 1.0 indicates that the likelihood of a positive test result is the same for
patients with and without the condition (i.e., Se = FPR). Odds ratios greater
than 1.0 indicate that the odds of a positive test result is greater for patients
with the condition; odds ratios less than 1.0 indicate that the odds of a positive
test result is greater for patients without the condition.

The other measure sometimes used in meta-analyses is Youden’s index: Se
+ Sp — 1, or written another way, Se — FPR. It has a maximum value of 1.0
and a minimum value of 0.0, and it reflects the likelihood of a positive result
among patients with versus without the condition.

Unlike the probability of a correct test result, the odds ratio and Youden’s
index are not dependent on the prevalence of the condition in the sample, for
which reason they are superior summary measures of accuracy. However, both
the odds ratio and the Youden’s index share two limitations with the probability
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of a correct result: First, they are based on only one decision threshold when,
in reality, many potential decision thresholds exist, and second, they treat FP
and FN results as equally undesirable. For example, suppose that test A has a
sensitivity of 0.90 and a specificity of 0.40 and test B has a sensitivity of 0.40
and a specificity of 0.90. The odds ratio and Youden’s index of both tests are
equivalent at 6.0 and 0.3, respectively, yet the two tests have very different
properties.

In later sections of this chapter, we discuss several other summary measures
of accuracy that are superior to the probability of a correct test result, the odds
ratio, and Youden’s index. These measures are associated with the receiver
operating characteristic (ROC) curve.

2.3 THE ROC CURVE

In 1971, Lusted described how a method used often in psychophysics could
be adopted for medical decision making. This method overcomes the limita-
tions of a single sensitivity and specificity pair and the summary measures
associated with single sensitivity and specificity pairs by including all of the
decision thresholds. A Receiver Operating Characteristic, or ROC curve 1s a
method of describing the intrinsic accuracy of a test apart from the decision
thresholds. Since the 1970s, it has been the most valuable tool for describing
and comparing diagnostic tests.

An ROC curve is a plot of a test’s sensitivity (plotted on the y axis) versus
its FPR, or (1 — specificity)(plotted on the x axis). Each point on the graph is
generated by a different decision threshold. We use line segments to connect
the points from all the possible decision thresholds, forming an empirical ROC
curve. We know that as the sensitivity increases, the FPR increases, and the
ROC curve shows precisely the magnitudes of these increases.

Figures 2.2 and 2.3 illustrate the ROC curves for the heart valve-imaging
data (Table 2.4) and mammography data (Table 2.6), respectively. In Figure
2.2, each circle on the empirical ROC curve represents a (FPR, Se) point cor-
responding to a different decision threshold. For example, the point at the far
left (FPR = 0.0, Se = 0.5) corresponds to the decision threshold of >0.13. (See
Table 2.5.) The point at the far right at (FPR = 0.7, Se = 1.0) corresponds to the
decision threshold at >0.0. Line segments connect the points generated from
all possible decision thresholds. In this example data, there are nine decision
thresholds that provide unique (FPR, Se) points in addition to the two trivial
points of (0, 0) and (1, 1).

In Table 2.6, there are k = 5 categories for the test results, that is, nor-
mal, benign, probably benign, suspicious, and malignant. In the corresponding
empirical ROC curve (Fig. 2.3), there are k — 1 (or 4) nontrivial points con-
nected with line segments. Point A on the curve, corresponding to the cutoff
at the malignant category, is a strict threshold in that only cases judged malig-
nant are considered positive. Point B corresponds to the cutoff at the suspicious
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category; it is a moderate threshold. Point C corresponds to the cutoff at the
probably benign category; it is a lax threshold.

It is often convenient to fit a statistical model to the test results of a sample
of patients. The fitted ROC curves (sometimes called smooth curves) for the
" heart valve—imaging test and mammography are also plotted in Figs. 2.2 and
2.3. The statistical model used is a binormal distribution (i.e., two Gaussian
distributions: one for the test results of patients without fractured heart valves,
the other for the test results of patients with fractured heart valves); it is the
most commonly used model for fitting ROC curves in diagnostic medicine.
When the binormal model is used, the curve is completely specified by two
parameters. The first parameter, denoted as a, is the standardized difference
in means of the distributions of test results for patients with and without the
condition. The second parameter, denoted as b, is the ratio of the standard
deviations (SDs) of the distributions of test results for patients without versus
with the condition. In Chapter 4, we discuss the binormal model of ROC curves
in detail; in this chapter, it is important to note that the intrinsic accuracy of
a test is completely defined by its ROC curve, which in many cases can be
defined by the two parameters a and b.

An ROC curve can be constructed from objective measurements of a test
(e.g., the gap value from the digitized image of a heart valve), objective evalu-
ation of image features (e.g., the attenuation coefficient from computed tomog-
raphy), or subjective diagnostic interpretations (e.g., the 5-category scale used
for mammographic interpretation) (Dwyer, 1997). The only requirement is that
the measurements or interpretations can be meaningfully ranked in magni-
tude. With objective measurements, the decision variable is explicit, so one
can choose from an infinite number of decision thresholds along the contin-
uum of test results. For diagnostic tests interpreted subjectively, the decision
thresholds are implicit or latent, for they exist only in the mind of the observer
(Hanley, 1989). An essential assumption for the ROC curve is that these deci-
sion thresholds are the same for the subsamples of patients with and without
the condition. When the decision thresholds are implicit, this assumption may
need to be tested (Zhou, 1995). (See Chapter 4.) The concept of the ROC curve
is the same whether the decision thresholds are explicit or implicit; the curve
illustrates the trade-off between the sensitivity and the FPR as the decision
threshold changes.

The name “receiver operating characteristic” curve comes from the notion
that given the curve, we—the receivers of the information—can use (or oper-
ate at) any point on the curve by using the appropriate decision threshold.
The clinical application determines which characteristics of the test are needed.
Consider the heart valve—-imaging data in Fig. 2.2. If the imaging technique is
used to screen asymptomatic patients, we will want good specificity to min-
imize the number of FPs because surgery to replace the valve is risky. We
might choose a cutoff at 0.07, where the FPR is 0.20 and the sensitivity is
0.50. On the other hand, if the imaging technique is used to diagnose patients
with chest pain, a higher sensitivity will be needed. In this setting, a cutoff
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at 0.03 is more appropriate, with a sensitivity of 0.90 and an FPR of 0.40.
We discuss the optimal choice of operating points for particular applications
in Section 2.11.

Most ROC curves are concave as in Figs. 2.2 and 2.3. Occasionally, how-
ever, a diagnostic test has an ROC curve with a “hook,” defined as a portion
of the ROC curve that lies below the chance diagonal (Pan and Metz, 1997).
These curves are called improper ROC curves (Metz and Kronman, 1930);
in Section 2.7, we discuss them in more detail when we introduce likelihood
ratios.

In evaluating the accuracy of a test, a sensible person might ask if it is really
necessary to generate a test’s ROC curve. The ROC plot has many advantages
over isolated measurements of sensitivity and specificity (Zweig and Camp-
bell, 1993). In contrast with a figure such as Fig. 2.1, an ROC curve is a
visual representation of accuracy data. The scales of the curve—sensitivity and
FPR—are the basic measures of accuracy and are easily read from the plot;
often, the values of the decision variable that generate the points are labeled on
the curve. The ROC curve does not require selection of a particular decision
threshold since all possible decision thresholds are included. Because sensitiv-
ity and specificity are independent of prevalence, so, too, is the ROC curve.
Like sensitivity and specificity, however, the ROC curve and associated indices
may be affected by the spectrum of disease as well as by patient characteris-
tics. A good example is a test for fetal pulmonary maturity; for this test, the
ROC curve is strongly affected by gestational age (Hunink et al., 1990).

Another advantage of the ROC curve is that it does not depend on the scale
of the test results: that is, it is invariant to monotonic transformations of the
test results, such as linear, logarithm, and square root (Campbell, 1994). In
fact, the empirical curve depends only on the ranks of the observations, not on
the actual magnitude of the test results.

Finally, the ROC curve provides a direct visual comparison of two or more
tests on a common set of scales. It is difficult to compare two tests when there is
only one sensitivity and specificity pair. The performance of one test is superior
to another only if that test is more specific and more sensitive, equally specific
and more sensitive, or equally sensitive and more specific. Even if one of these
cases holds, however, it is difficult to determine how much better the test is
when a change in the decision threshold occurs, because such a change may
affect the two tests differently (Turner, 1978). By constructing the ROC curve,
a comparison of tests at all decision thresholds is possible.

2.4 THE AREA UNDER THE ROC CURVE

As noted in Section 2.2, it is often useful to summarize the accuracy of a test
by a single number. Several such summary indices are associated with the ROC
curve, one of which is the area under the ROC curve, or just A.

The ROC curve area can take values between 0.0 and 1.0. An ROC curve
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with an area of 1.0 consists of two line segments: (0, 0)-(0, 1) and (O, 1)—(1, 1).
Such a test is perfectly accurate because the sensitivity is 1.0 when the FPR
is 0.0. Unfortunately, such diagnostic tests are rare. In contrast, a test with
an area of 0.0 is perfectly inaccurate; that is, patients with the condition are
labeled incorrectly as negative and patients without the condition are labeled
incorrectly as positive. If such a test existed, it would be trivial to convert it
into one with perfect accuracy only by reversing the test results. The practical
lower bound for the ROC curve area is 0.5. The (0, 0)—(1, 1) line segment has
an area of 0.5; it is called the chance diagonal. If we relied on pure chance to
distinguish patients with versus without the condition, the resulting ROC curve
will fall along this diagonal line. (See Exercise 2.2 at the end of this chapter.)

Diagnostic tests with ROC curves above the chance diagonal have at least
some ability to discriminate between patients with and without the condition.
The closer the curve to the (0, 1) point (left upper corner), the better the test. As
we discuss in Chapter 4, to statistically evaluate whether the ROC curve area
differs from 0.5 is often appropriate. Rejection of this hypothesis implies that
the test has some ability to discriminate between patients with versus without
-the condition.

The ROC curve area has several interpretations:

1. the average value of sensitivity for all possible values of specificity;

2. the average value of specificity for all possible values of sensitivity
(Meiz, 1986, 1989); and

3. the probability that a randomly selected patient with the condition has
a test result indicating greater suspicion than that of a randomly chosen
patient without the condition (Hanley and McNeil, 1982).

The third interpretation comes from work of Green and Swets (1966) and Han-
ley and McNeil (1982). Green and Swets showed that the area under the true
ROC curve is linked to the 2-alternative forced-choice (2-AFC) experiment
used in psychophysics. (By “true ROC curve,” we mean the empirical curve
if it is constructed from an infinitely large sample of patients and an infinite
number of decision thresholds. Note that the fitted curve is an estimate of this
true curve.) In a 2-AFC experiment, two stimuli are presented to an observer:
one is noise, the other is signal. The observer identifies the signal stimulus;
the area under the ROC curve is the frequency with which the observer cor-
rectly identifies the signal. The area under the ROC curve constructed from
ordinal or continuous data retains this same meaning, even though the 2-AFC
experiment is not performed (Hanley and McNeil, 1982). The area under the
empirical ROC curve is actually computed from the mathematical reconstruc-
tion of random pairs of patients with and without the condition. Out of the
pair, the patient with the more suspicious test result is considered the signal
stimulus. (See Chapter 4.)
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Bamber (1975) noted that the area under the empirical ROC curve is equiv-
alent to the quantity obtained when one performs the Mann-Whitney version
of the Wilcoxon 2-sample rank-sum statistic. This link is important because the
properties of the Wilcoxon statistic are used to predict the statistical properties
of the ROC curve area (Hanley and McNeil, 1982). (See Chapter 4.)

Table 2.8 describes the ROC curve areas of some common diagnostic tests.
One can see that a large range in ROC curve areas exists for these tests. We
cannot say which ROC curve area is a good one, because what is considered

Table 2.8 ROC Curve Areas for Some Common Diagnostic Tests

Target Disorder

Patient Population

Diagnostic Test
(and Gold Standard)

ROC Curve Area

Breast cancer

Multiple Sclerosis
(MS)

Herniated nucleus
pulposus—
caused nerve
compression

Fetal pulmonary
maturity

Tumor staging in
non—-small cell
bronchogenic
carcinoma

Obstructive
airways
disease

Women presenting
for screening

Patients with signs
and symptoms
of MS

Patients with
acute Jow-back
and radicular
pain

Infants who were
delivered within
72 hours of
amniotic fluid
testing

Patients with known
or suspected
non—small cell
bronchogenic
carcinoma

Subjects presenting
to the pulmonary
function test lab

Film-screen
mammography
(biopsy or two
year followup

MRI

CT
(expert panel)

MRI

CT

CT myelography
(expert panel)

Lecithin/sphingomyelin
ratio

Saturated
phosphatidylcholine
(evaluation of
newborn)

CT/MRI
(surgery or biopsy)

Forced expiratory
time (spirometry)

Range: 0.74-0.95
Mean: 0.85
(Beam et al., 1996)

0.82

0.52
(Mushlin et al.,
1993)

0.81-0.84

0.86

0.83
(Thornbury et al.,
1993)

0.70-0.88

0.65-0.85
(Hunink et al.,
1990)

Chest wall invasion:
0.86/0.87

Bronchial
involvement:
0.83/0.78

Mediastinal invasion:
0.83/0.92

Mediastinal node
metastasis:
0.60/0.60

(Webb et al., 1991)

0.63

(Schapira et al.,
1993)
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good depends on the disorder and clinical application. However, the table does
allow us to put the ROC curve areas of new tests in context with some com-
monly used and accepted diagnostic tests.

In Fig. 2.3, the area under the empirical ROC curve for mammography is
0.83: that is, if we select, at random, two patients—one with and one without
breast cancer—the probability is 0.83 that the patient with breast cancer will
have a more suspicious test result. The area under the binormal-fitted curve is
slightly larger at 0.86. Unless the number of decision thresholds is large, the
area under the empirical ROC curve is usually less than the area under the
fitted curve. (See Chapter 4.)

In Fig. 2.4, the fitted ROC curve for gap is illustrated along with a pos-
sible alternative diagnostic measure, offset. Although gap describes the dis-
tance between the legs of the artificial heart valve, offset describes the devi-
ation of the strut leg from a straight line. The areas under these fitted curves
are, respectively, 0.87 and 0.65. Based on the ROC curve areas, it is gap, not
offset, that has superior performance.

On rare occasions, the ROC curve area, when used as a measure of diagnos-
tic accuracy, can be misleading. Hilden (1991) offers a hypothetical example
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Figure 2.4 Fitted ROC curves for gap and offset.
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of a perfectly discriminating test with an ROC curve area of only 0.5. Suppose
that patients without the condition have test values between 80 and 120, while
one half of the patients with the condition have values less than 80 and the other
half have values greater than 120. The ROC curve, shown in Fig. 2.5, consists
of the following line segments: (0.0, 0.0)—(0.0, 0.5); (0.0, 0.5)—(1.0, 0.5); and
(1.0, 0.5)—(1.0, 1.0). The ROC curve area is 0.5, yet the test discriminates
perfectly between patients with and without the condition. The transformation
T" =|T - 100] leads to an ROC curve with area of 1.0. We now assume that,
when appropriate, a test’s results have been transformed so that as the value
of the test result increases, the likelihood of the condition increases. A real
example of when such a transformation is necessary is a test for atherosclerosis
of the carotid arteries. Ultrasound is used to measure the velocity of blood as
it passes through the vessels. The velocity increases as the extent of disease
increases; however, when a vessel is completely occluded, the velocity is zero.
To estimate the ROC curve area of the velocity measurements, Hunink et al.
(1993) assigned ranks to the velocity measurements, but instead of assigning
a rank of one to the zero velocities, they assigned the highest rank.

1.0

0.8

Sensitivity
o
[
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®
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0.0

0.0 0.2 0.4 0.6 0.8 1.0

FPR
Figure 2.5 A perfectly discriminating test with an ROC area of 0.5.
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The ROC curve area describes a test’s inherent ability to discriminate
between patients with versus without the condition, for the ROC curve area
is invariant to the prevalence of the condition and the cutoffs used to form
the curve. Such a measure of diagnostic accuracy is useful in the early stages
of a diagnostic test’s evaluation, but once a test’s ability to distinguish well is
shown, its role for particular applications must be evaluated. At this stage, we
may be interested only in a small portion of the ROC curve. For example, if
we use the heart valve—imaging technique to screen asymptomatic patients, we
are interested only in the part of the ROC curve where the specificity is high;
we will adjust our decision threshold to ensure that the specificity is high. We
are not interested in the average sensitivity over all specificities or the average
specificity over all sensitivities. As a global measure of intrinsic accuracy, the
ROC curve area is not always relevant.

Similarly, the ROC curve area may be misleading when comparing the accu-
racy of two tests. The ROC curve areas of two tests may be equal, but the tests
may differ in clinically important regions of the curve. Likewise, the ROC
curve areas may differ, but the tests may have the same area in the clinically
relevant region of the curve. Figure 2.6 illustrates two ROC curves that cross
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Figure 2.6 Two tests with crossing ROC curves.
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at an FPR of 0.14. The area under curve A is greater than the area under curve
B (i.e., 0.85 versus 0.80). If the clinically relevant region of the curve is at low
FPRs, test B is preferrable to test A, despite the greater ROC curve area for A.

In Sections 2.5 and 2.6, we present two alternative summary measures of
intrinsic accuracy that focus on only a portion of the ROC curve, thus over-
coming the main limitation of the area under the whole curve.

2.5 THE SENSITIVITY AT A FIXED FPR

An alternative summary measure of intrinsic accuracy is the sensitivity at a
fixed FPR or, similarly, the FPR at a fixed sensitivity, which we write as
Sempr=¢) OF FPR(sc (), respectively. For a predetermined FPR of e (or prede-
termined sensitivity of e), the sensitivity (or FPR) is estimated from the ROC
curve.

This measure of accuracy allows us to focus on the particular portion of the
ROC curve of clinical relevance. The characteristics of the clinical application,
such as the prevalence of the condition and the consequences of misdiagnoses
(see Section 2.10), determine at which FPR or sensitivity we need to operate.
The ROC curves for gap and offset were illustrated in Fig. 2.4. Suppose that the
clinical situation requires a low FPR. At FPR = 0.05, the sensitivity is 0.41 and
0.35 for gap and offset, respectively; at FPR = 0.20, the respective sensitivities
are 0.78 and 0.51. (See Chapter 4 for a description of these MLEs.) Thus at
both of these FPRs, the observed sensitivity is greater for gap.

The sensitivity at a fixed FPR is often preferable to the ROC curve area
when evaluating a test for a particular application. This measure also has a
simple and clinically useful interpretation. One disadvantage of this measure
is that reported sensitivities from other studies are often at different FPRs; thus
comparisons with published literature can be problematic. A second disadvan-
tage is that published reports are not always clear regarding whether the FPR
was selected before the start of the study (as it should be) or after the data
were examined (a practice that can introduce bias) (Hanley, 1989). A third
disadvantage is that the statistical reliability of this measure is lower (i.e., the
variance is larger) than that of the ROC curve area (Hanley, 1989; Obuchowski
and McClish, 1997). (See Chapter 6.)

2.6 THE PARTIAL AREA UNDER THE ROC CURVE

Another summary measure of intrinsic accuracy is the partial area under the
ROC curve. As its name implies, it is the area under a portion of the ROC
curve, often defined as the area between two FPRs, ¢, and e,, for which we
write A, <FPrR<e,)- Similarly, we can define the area between two sensitivities,
for which we write A, <se<e,). If €1 =0 and e, = 1, the area under the entire
ROC curve will be specified; if e; = e, the sensitivity at a fixed FPR of e (or
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FPR at a fixed sensitivity of ) will be given. The partial area measure is thus
a compromise between the ROC curve area and the sensitivity at a fixed FPR.

Like the sensitivity at a fixed FPR index, the partial area allows one to focus
on the portion of the ROC curve relevant to a particular clinical application. In
Fig. 2.4, if an FPR range is restricted to 0.0-0.05, the partial area for offset will
be slightly larger than it will be for gap (though not statistically significant) at
0.0139 versus 0.0126. If we include larger FPRs, such as 0.0-0.20, the partial
area for gap (0.108) will be larger than it will be for offset (0.080). (See Chapter
4 for descriptions of these MLESs.)

To interpret the partial area, we must consider its maximum possible value.
The maximum area is equal to the width of the interval, that is, (ex — ey)
(McClish, 1989). McClish (1989) and Jiang, Metz, and Nishidawa (1996) rec-
ommend standardizing the partial area by dividing by its maximum value; Jiang
et al. refer to this standardized partial area as the partial area index. This index
is interpreted as the average sensitivity for the range of specificities examined
(or average specificity for the range of sensitivities examined), an interpreta-
tion that is highly useful clinically. For the heart valve-imaging example, the
average sensitivities in the 0.0-0.20 FPR range are 0.54 and 0.41, respectively,
for gap and offset.

Dwyer (1997) offers a probabilistic interpretation of the partial area index
when the partial area is defined for sensitivities greater than e;, that is,
Ae,<TPR<1.0). The partial area index equals the probability that a randomly
chosen patient without the condition will be distinguished correctly from a
randomly chosen patient with the condition who tested negative for the crite-
rion that corresponds to TPR = e;. For example, suppose we want to estimate
Aws<TPr<1.0) from the gap values in Table 2.4. From Table 2.5, we know that
a cutoff of >0.05 corresponds to an observed sensitivity of 0.80. Among the
10 patients with a fractured valve, 2 tested negative using this criterion (i.e.,
2 patients had gap values of <0.05). The partial area index is the probability
that a randomly chosen patient with an intact valve will be correctly distin-
guished from a patient like one of the foregoing. An analogous interpretation
for A.0<FPR<e,) 1S the probability that a randomly chosen patient with the con-
dition will be correctly distinguished from a randomly chosen patient without
the condition who tested positive for the criterion that corresponds to FPR =
e,. Note the similarities between this interpretation and the probabilistic inter-
pretation of the ROC curve area.

A potential problem with the partial area measure is that the minimum pos-
sible value depends on the location along the ROC curve. The minimum par-
tial area is equal to (1/2)(e; — e;)(es + e;) (McClish, 1989). For example, the
minimum value for Ag<ppr<02) is 0.02 (maximum value is 0.20) and the min-
imum value for As<rpr<1.0) is 0.18 (maximum value is 0.20). Suppose that
we estimated a partial area of 0.19 for both of these FPR ranges; the partial-
area index, 0.95, is the same for both ranges. However, we would probably
not value these two areas the same. To remedy this problem, McClish (1989)
offers a transformation of the partial area to values between 0.5 and 1.0. The
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formula is as follows:

1 - A, <FPR<er) — MiN
2 max — min

(2.1)

where min and max are the minimum and maximum possible values for the
partial area. Continuing with this example, the partial area of 0.19 is trans-
formed to 0.972 for the 0.0-0.2 FPR range and 0.75 for the 0.8-1.0 FPR range.
For the heart valve-imaging example, the transformed partial area for gap and
offset in the 0.0-0.20 FPR range is 0.744 and 0.672, respectively.

The partial area measure has similar limitations to the sensitivity at a fixed
FPR. First, it is difficult to compare this measure with the published literature
if different ranges are used. Second, the relevant range should be specified a
priori; it is not always clear from published reports whether this specification
had occurred. Third, the statistical reliability of this measure is lower than that
of the ROC area but greater than that of the sensitivity at a fixed FPR (Hanley,
1989; Obuchowski and McClish, 1997). (See Chapter 6.)

2.7 LIKELIHOOD RATIOS

Still another single index of diagnostic accuracy is the likelihood ratio (1.R),
the ratio of two probabilities: the probability of a particular test result among
patients with the condition to the probability of that test result among patients
without the condition. The LR can be defined for a single test result value, for
an interval of test values, and for the results of one side of a decision threshold.
In symbols,

P(T =t|D=1)
P(T =1|D = 0)

LR() = (2.2)

where ¢ can be a single test value, an interval of test values, or one side of a
decision threshold. When the test result refers to one side of a decision thresh-
old, we have positive and negative LRs, where

_PT=1D=1)
LR® = 510 20)
and
_ P(T=0D=1)
LR(=)= P(T =0|D = 0)

Note that the LR(+) is the ratio of sensitivity to the FPR; likewise, LR(—) is
the ratio of the FNR to specificity. For example, from Table 2.6, let us choose
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o decision threshold at probably benign so that patients classified as probably
benign, suspicious, or malignant will be called positive. The LR(+) = Se/FPR
~ 0.967/0.633 = 1.53; the LR(-) = FNR/Sp = 0.033/0.367 = 0.09.

The LR reflects the magnitude of evidence that a particular test result pro-
vides in favor of the presence of the condition relative to the absence of the
condition. An LR of 1.0 indicates that the test result is equally likely in patients
with and without the condition; an LR > 1.0 indicates that the test result is more
likely among patients with the condition than without the condition; and an LR
< 1.0 indicates that the test result is more likely among patients without the
condition. The higher the LR, the likelier the test result among patients with
the condition relative to patients without the condition. With the mammogra-
phy example, a positive test result is 53% more likely in patients with breast
cancer than patients without breast cancer; a negative test result is 11 (i.e.,
1/0.09) times more likely in patients without breast cancer.

Table 2.9 summarizes the probability of various gap values for patients
with and without valve fractures. The last column gives the LR(7). Gap val-
ues between 0.031 and 0.050 are equally likely in patients with and without
a fractured valve (i.e., the probability of 0.10), whereas gap values between
0.051 and 0.070 are twice as likely in patients with a fractured valve.

Using LRs is a convenient means of describing the degree of abnormality.
Radack, Rouan, and Hedges (1986) describe a 773-patient prospective study
of the usefulness of creatine kinase concentration in the diagnosis of acute
myocardial infarction (AMI). They calculated five LRs corresponding to five
serum creatine kinase value ranges: LR = 9.26, for a value > 480 1U/L; 7.31,
for 361-480; 4.15, for 241-360; 0.42, for 121-240; and 0.69, for 1-120. A
test result of 150 is four-tenths as likely in a patient with AMI, whereas a
value greater than 480 is nine times more likely in a patient with AMI than a
patient without AMI. Differences in LR magnitude provide important clinical
information not available when a single decision threshold is chosen.

Table 2.9 Estimating LT() From the Heart Valve-Imaging Study

Test Result, 7 P(T =t|D=0) P(T=tD=1) LR()
0.0 0.3 0.0 0.0
0.001 — 0.030 0.3 0.1 0.33
0.031 — 0.050 0.1 0.1 1.0
0.051 — 0.070 0.1 0.2 2.0
0.071 - 0.100 0.0 0.1 Undefined
0.101 - 0.130 0.2 0.0 0.0
>0.0 0.7 1.0 1.43
>0.03 0.4 0.9 2.25
>0.05 0.3 0.8 2.67
>0.07 0.2 0.6 3.0

>0.15 0.0 0.3 Undefined
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Another example comes from a study by Mushlin et al. (1993) of the accu-
racy of MRIs in identifying multiple sclerosis (MS). Two observers assigned one
of the following rating categories to each of 303 patients: “definitely not MS,”
“probably not MS,” “possible MS,” “probable MS,” and “definite MS.” The cor-
responding LRs were 0.3, 0.3, 1.3, 2.9, and 24.9. Although the accuracy of the
MRI was less than definitive (ROC curve area =0.82), the authors concluded that
a “definite MS” reading essentially established the diagnosis of MS. However,
25% of patients with MS were classified as “probably not MS” or “definitely not
MS”; thus these diagnoses were not sufficient to rule out MS.

Zweig and Campbell (1993) note that LRs can be easily misinterpreted.
Consider the mammography data in Tables 2.3 and 2.7. The LR(+), 1.53, is the
same in both tables; thus it is correct to say that a positive result is 1.53 times
more likely in patients with cancer as compared with patients without cancer.
It is nor necessarily correct to say that given a positive test result, a patient
is 1.53 times more likely to have cancer than to not have cancer. The latter
statement is a reflection of the prevalence in the population. For example, in
Table 2.3 (showing a prevalence of breast cancer of 50%), given a positive test
result, the ratio of patients with cancer to without cancer is 1.53 (i.e., 29: 19
equals 1.53:1), but in Table 2.7 (showing a prevalence of 1%), the ratio is
0.015 (i.e., 29: 1881), indicating that it is much more likely that a patient with
a positive test result does not have cancer.

The LR is linked to the empirical ROC curve. The numerator of the LR(+)
is the y coordinate of the curve; the denominator, the x coordinate of the
curve. The LR for an interval of test values, ¢; ~ ,, corresponds to the slope
of the line segment between #; and #, on the ROC curve (Choi, 1998). The
ROC curve labeled A in Fig. 2.7 corresponds to the gap measurement of the
heart valve—imaging study. (See Table 2.9.) The line connecting the (FPR, Se)
coordinate for the decision threshold at 0.0 and the (FPR, Se) coordinate for
the decision threshold at 0.03 has a slope of 0.33, which corresponds to the
LR(0.001 — 0.030) from Table 2.9. One can verify this equivalence by com-
puting the change in sensitivity divided by the change in FPR for these two
points——that is, from the bottom of Table 2.9: (1.0 - 0.9)/(0.7 - 0.4) = 0.33.
Similarly, the slope of the line between the (FPR, Se) coordinates correspond-
ing to decision thresholds at 0.03 and 0.05 is 1.0, which is the LR(0.031 -
0.050). The ROC curve labeled B has the single point (Se = 0.9, FPR = 0.4)
from the decision threshold > 0.03. The slope of the line from the origin to
this point is 2.25-—that is, the LR(+) for the >0.03 cutoff. For ROC curve B,
the slope is the ratio of Se/FPR, or LR(+). Generally, though, the slope is the
change in sensitivity divided by the change in FPR over the defined interval
of test results as in ROC curve A (Zweig and Campbell, 1993).

In Section 2.3, we described improper ROC curves. The distinction between
proper and improper ROC curves is based on the LR. Figures 2.8 and 2.9
illustrate a proper and improper ROC curve, respectively. The insets in both
figures depict the corresponding distributions of test results for hypothetical
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Figure 2.7 ROC curves and their LRs.

patients: the light shading denotes the distribution of test results for patients
without the condition, whereas the dark shading denotes the test results of
patients with the condition. In Fig. 2.8, the disiributions of the test results of
patients with and without the condition are identical but shifted apart. The cor-
responding ROC curve is a decreasing function of the LR. At the bottom left
corner of the curve, corresponding to large test values, the LR is >1.0. The
LR decreases along the curve’s path. At =17, the LR = 1.0. At the top right
corner of the curve, corresponding to small test values, the LR is <1.0. Proper
ROC curves such as the one depicted in Fig. 2.8 are monotonic functions of
the LR (Pan and Metz, 1997).

In contrast, Fig. 2.9 shows more variability in the test results of patients
without the condition. At the far bottom left corner of the ROC curve and at
the far top right corner, the LR is <1.0. The probability that 7' = 16 is the same
for patients with and without the condition; thus the LR = 1.0. Similarly, at T =
21, the LR = 1.0, and when T is between 16 and 21, the LR is >1.0. This ROC
curve is an improper one because it is not a monotonic function of the LR.
The curve has the characteristic “hook” (Pan and Metz, 1997) at the bottom
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Figure 2.8 A proper ROC curve.

left. Problems in estimating improper ROC curves can occur; see Chapter 4
for a discussion.

The LR is an intrinsic measure of diagnostic accuracy because it is unaf-
fected by the prevalence of disease. For example, the LR(+) and LR(-) from
the mammography data in Tables 2.3 and 2.7 are identical at 1.53 and 0.09,
despite the differing prevalence of breast cancer. The LR, however, has some
limitations when it is used as a single measure of accuracy. Like all ratios of
two random variables, it is difficult to estimate its standard error (SE) and sta-
tistical distribution. (See Chapters 4.) Zweig and Campbell (1993) illustrate
that an LR without an accompanying ROC curve can be misleading. They
present two ROC curves with identical LRs for the line segments forming the
curves but with vastly different ROC curve areas. The two identical curves are
parallel, but one is located near the upper left corner, the other near the chance
diagonal. The primary role of the LR lies in using Bayes’ theorem (see Sec-
tion 2.10) and in defining the optimal decision threshold for particular clinical
applications (see Section 2.11).
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Figure 2.9 An improper ROC curve.

2.8 OTHER ROC CURVE INDICES

Several ROC curve summary indices are used in psychophysics, which we
describe here briefly for their historical significance. The measures d’, d,, and
7(A) are derived from ROC curves fit to the binormal model. They are best
understood when the ROC curve is plotted on normal deviate scales (Fig. 2.10),
because normal-fitted ROC curves are straight lines on such scales. By “nor-
mal deviate,” we mean the value from a standard normal distribution that cor-
responds to a certain probability. For example, 95% of observations from a
standard normal distribution are less than the normal deviate value of 1.645.
Thus in Fig. 2.10, instead of indicating on the y axis a sensitivity of 0.95, we
indicate a normal deviate value of 1.645.

The first index, d’, equals the normal deviate value corresponding to the
sensitivity minus the normal deviate value corresponding to the FPR (Green
and Swets, 1966). Index d’ is applicable only when b = 1.0; it can be measured
at any point along the ROC curve. In Fig. 2.10, the ROC curve labeled 1
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Figure 2.10 Normal fitted ROC curves plotted on normal deviate scales.

has a unit slope. At the normal deviate of the FPR of 0.0, written z(FPR) =
0.0, the z(TPR) = 1.19; thus &’ equals 1.19 — 0.0 = 1.19. The value of d’
for the chance diagonal is 0.0: ¢’ equals about 4.0 at near-perfect discrimina-
tion (Swets, 1979). The index d;, can be used when the binormal ROC curve
parameter b is not equal to 1.0 (Egan and Clarke, 1966). It is calculated in
the same way as d” but measured where the ROC curve crosses the negative
diagonal, that is, the diagonal line from (0, 1) to (1, 0). In Fig. 2.10, the ROC
curve labeled 2 has a nonunit slope. Where the negative diagonal crosses ROC
curve 2, Z(FPR) = —0.75 and z(TPR) = 0.75: thus d, = 1.5. A second measure
for when b does not equal one is z(A) (Schulman and Mitchell, 1966; Simp-
son and Fritter, 1973; Swets, 1979). Index z(A) is equal to the perpendicular
distance between the ROC curve and the point z(FPR) = z(TPR) = 0.0. For
ROC curves | and 2, z(A) = 0.84 and 1.04, respectively. When b = 1.0, the
quantity \/_2}(14) is equal to d’ and d/. These three measures are seldom used
in diagnostic medicine because (1) they rely on a normal distribution fit to the
test results and (2) they do not have clinically useful interpretations.

Two new measures have been proposed as alternatives to the ROC curve
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area: the projected length of the ROC curve (PLC) and the area swept out by
the ROC curve (ASC) (Lee and Hsiao, 1996). They are defined geometrically
but have probabilistic interpretations. The PLC is the sum of all of the projected
lengths of the segments making up the ROC curve onto the negative diagonal.
To illustrate these two measures, we use the ROC curve in Fig. 2.5; it comprises
the following four line segments: a, b, ¢, and d. The PLC=d +b +c +d
= 4(\/5/4) — 1.414. The ASC is the sum of the areas swept out by a ray
emanating from the origin (0, 0) to each point on the ROC curve. In Fig. 2.5,
the ASC = A + 2B + C = 0.5. The corresponding probabilistic interpretations
are given in the example that follows.

Suppose a patient with equal chances of having and not having the con-
dition presents for diagnosis. After testing, we compare the probabilities of
having versus not having the condition; the diagnosis is assigned according
to the higher probability. Lee and Hsiao (1996) refer to this scenario as strat-
egy A. The probability of correctly diagnosing a patient with the condition, in
addition to the probability of correctly diagnosing a patient without the condi-
tion, by using strategy A is a linear function of the PLC. For example, in Fig.
2.5 this probability is 1.0. The ASC index is related to a different testing sce-
nario, referred to as sirategy B. Suppose that two patients—one with and one
without the condition—present for diagnosis. We first rank their test results
without determining the actual values of those test results; then we ascertain
the actual test result of at least one of the patients. If we ascertain the test result
of the patient with the lower rank, we denote this the low in-value. We com-
pare the probabilities of having versus not having the condition; the diagnosis
is assigned according to the higher probability. The probability of correctly
diagnosing a pair of patients when the low—in-value patient has the condition,
in addition to the probability of correctly diagnosing a pair of patients when
the low—in-value patient does not have the condition, is a linear function of
the ASC. For example, in Fig. 2.5 this probability is 1.0.

The main advantage of the PLC and ASC indices over the ROC curve area
is that they do not require any transformation of the test results in the rare
situation, such as that in Fig. 2.5, in which the ROC curve area is 0.5 and yet
the test discriminates perfectly between patients with and without the condition.
The disadvantages of the PLC and ASC are that

1. like the ROC curve area, they are global measures of accuracy and thus
are not useful for particular clinical applications;

2. their interpretations are no more meaningful (perhaps even less mean-
ingful) clinically than the probabilistic interpretation of the ROC area;

3. their estimation, SEs, and statistical properties have not been well-stud-
ied;

4. they are difficult to estimate for tests with results on a continuous scale.
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2.9 THE LOCALIZATION AND DETECTION OF MULTIPLE
ABNORMALITIES

Some diagnostic tasks are more complicated than simple detection of a single
occurrence of the condition. For example, mammography patients can have
multiple lesions that must be correctly located prior to follow-up procedures,
such as biopsies, and surgery. Another example is the detection of infarcts in
a patient suspected of having a stroke. Multiple infarcts can occur, making
detecting and locating them in the correct brain hemisphere especially criti-
cal. Several modifications to the ROC curve have been proposed to describe
accuracy when it involves the localization and/or detection of multiple abnor-
malities. In this section, we briefly review these ideas.

Starr et al. (1975) proposed the idea of location-ROC curves (LROCs),
where a TP requires both detection and correct localization of the condition.
Starr et al. also developed equations to predict the performance of a reader
who must detect and correctly locate a condition; the equations are based on
the reader’s conventional (i.e., detection-only) ROC curve. They assume that
the decision variables in each subregion of an image are independent. This
assumption is highly restrictive: perhaps it is the reason why LROC curves
have not been used widely.

In 1976, Metz, Starr, and Lusted proposed a modification to the ROC curve
for describing accuracy when there are potentially multiple occurrences of the
condition (no localization). Unfortunately, this modification also assumes that
subregions are independent of one another.

Egan, Greenberg, and Schulman (1961) and, later, Bunch et al. (1978) pro-
posed the idea of free-response ROC curves (FROC), which handle the task
of detecting and locating multiple occurrences of the condition. The y axis of
the FROC curve is the probability of both detecting and correctly locating the
condition; the x axis is the average number of FPs per case. The summary
index of the FROC curve is interpreted as the average fraction of occurrences
detected on each image before the reader makes one FP error, Chakraborty
(1989) and, later, Chakraborty and Winter (1990) developed methods to esti-
mate the FROC curve. However, they, too, assume independence between mul-
tiple positive findings on the same image.

Obuchowski et al. (2001) proposed an alternative to FROC curves that does
not make the independence assumption. They proposed that the image be divided
a priori into multiple mutually exclusive regions, each of which the reader must
diagnose separately. The authors proposed the use of statistical methods that con-
sider the correlation in test results between regions of the same patient.

2.10 INTERPRETATION OF DIAGNOSTIC TESTS

In this section, we address one of the most important questions to clinicians:
What does this test result mean? For a patient with a positive test result, we
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want to know the probability of the patient having the condition; for a patient
with a negative test result, we want to know the probability of the patient
not having the condition. In symbols, these probabilities are P(D = 1T =1)
and P(D = 0|T = 0), respectively. Determining these probabilities is tricky
because they depend on not only the intrinsic accuracy of the test but also the
probability of the condition before the test is performed.

Consider as an example a 65-year-old woman who has undergone a screen-
ing mammogram, the result of which is positive. What is the probability that
this patient has breast cancer? Suppose that Table 2.7 describes the results of a
prospective study of 3000 65-year-old women who have undergone screening
mammography. We can compute the probability of breast cancer after a pos-
itive mammogram directly from these data. The number of patients who test
positive is 1910, and of these patients, only 29 actually have breast cancer; thus
P(D = 1|T = 1) = 29/1910, or 0.015. The probability of the condition given
a positive test result, is the positive predictive value or PPV. The probability
that the patient does not have breast cancer following a positive mammogram,
P(D =0|T = 1), is 1881/1910 = 0.985, or simply 1 — PPV.

Suppose that this patient has a negative mammogram. The probability that
the patient does not have breast cancer following a negative test result, P(D =
0|T = 0), is the negative-predictive value (NPV). Here NPV = 1089/1090, or
0.999. The probability of breast cancer after a negative test result is I — NPV,
or 0.001.

Recall that the sensitivity and specificity calculated from Tables 2.3 and
2.7 were identical: 0.967 and 0.367. However, the PPV and NPV calculated
from these two tables are not identical; from Table 2.3, the PPV = 0.604 and
the NPV = 0.917, as compared with 0.015 and 0.999 from Table 2.7. The
discrepancy is due to the different prevalence rates. The PPV and NPV are
not measures of the intrinsic accuracy of a test; they are functions of both the
intrinsic accuracy and the prevalence of the condition. Both the study design
and sampling scheme affect the prevalence rate in a study sample. (See Chapter
3.) These factors must be considered when estimating the PPV and NPV.

Continuing with this example, suppose that the 65-year-old woman with the
positive mammogram differs from the patients in Table 2.7 because she has
a family history of breast cancer. The probability of breast cancer in women
with a family history of the disease is higher than in the general population.
Because PPV and NPV are functions of the prevalence of the condition, we
cannot compute them directly from Table 2.7. However, we can still use the
intrinsic accuracy estimates from Table 2.7 (or Table 2.3) to compute the PPV
and NPV using Bayes’ theorem.

Bayes’ theorem, named after the Reverend and mathematician who devel-
oped it (Bayes, 1763), is a method of determining both the PPV and NPV,
given both the intrinsic accuracy of a test and the probability of the condition
before the test is applied. The latter probability is the pre-test probability and is
based on the patient’s history, signs and symptoms, and results of any diagnos-
tic tests performed previously. The PPV and NPV are the post-test probabilities
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of the condition (also called revised or posterior probabilities), because they
represent the probability of the condition after the test result is known. Bayes’
theorem. then, gives us the post-test probability of the condition as a function
of the pre-test probability of the condition and the sensitivity and specificity
of the test. Bayes’ theorem is expressed as

P(T =t|D=d)P(D =d)

P(D =d|T =1) = 2.3
(D=dIT=0 P(T=1lD=0)PD=0)+PT-ND=DpPD=1 7
For example, to compute the PPV and NPV,
Sex P(D =1) |
PPV =P(D=1|T=1) = | 2.4
D=1T=D Sex P(D=1)+(1 - Sp)x P(D = 0) (2.4
and
Spx P(D =0
NPV = P(D = 0|T = 0) = px P (2.5)

Spx P(D=0)+ (1 — Se)x P(D = 1)

Bayes’ theorem can be proven using the statistical definition of conditional
probability. Let A and B denote two events. The conditional probability P(A|B)
is equal to P(A and B)/P(B). The numerator on the right side of Eq. (2.3) is
equal to P(A and B) and the denominator is equal to P(B); thus the theorem is
proven.

Figure 2.11 illustrates the relationship between the pre- and post-test prob-
abilities after a positive test result. Here, the sensitivity is constant at 0.95,
and the FPR is 0.01, 0.10, or 0.25. When the pre-test probability is very low,
a positive test greatly increases the probability of the condition. In contrast,
when the pre-test probability is very high, a positive test has little effect on
the probability of the condition. A positive test has its greatest impact when
the FPR is low. In contrast, the sensitivity has a large timpact when a test result
is negative—ithe greater the sensitivity, the larger the impact.

It is important to note that one cannot properly assess the results of a diag-
nostic test without knowing the probability of the condition before the test is
performed (Sox, Jr. et al., 1989). A good description is given by Diamond and
Forrester (1979), who applied Bayes’ theorem to compute the probability of
coronary artery disease occurring after stress electrocardiography. They present
a table of post-test probabilities according to the test result (depression of the
S5-T segment in millimeters) and to each of three pre-test conditions (patient
age, gender, and symptoms). For the same depression of the S-T segment, the
post-test probability varies from 0.938 for a 60- to 69-year-old male with typi-
cal angina to 0.003 for a 30- to 39-year-old woman with no symptoms.
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Figure 2.11 The relationship between pre-test probability and the PPV.

An alternative form of Bayes’ theorem uses odds ratios and LRs (Sox, Jr.
et al., 1989):

post-test odds = pre-test odds X LR (2.6)

The odds are formed by dividing a probability by its complement: odds =
P/(1 — P). For example, if we divide Eq. (2.4) by P(D =0|T = 1), then

oy L g(j‘}

PPV PD=1) 7 Se
(1-PPV) PMD=0)" (1-Sp)

LR,

Similarly, NPV/(1 — NPV) = P(D = 0)/P(D = 1) X WI — Se). The proba-
bility is then calculated from the odds by P = odds/(odds + 1).

Suppose that the pre-test probability of breast cancer is 10% for a 65-
year-old woman with a family history of breast cancer. The pre-test odds are
0.10/0.90 to 1, or 0.1111 to 1. From Table 2.7 (or Table 2.3), the LR(+) is 1.53,
in which case the post-test odds are 0.1111 x 1.53 = 0.17, which is equivalent

to a probability (i.e., a PPV) of 0.145.
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The version of Bayes’ theorem given in Eq. (2.6) is convenient because the
value of the LR conveys the impact of the test result. An LR of 1.0 does not
alter the odds, a large LR increases the odds, and a small LR decreases the
odds. For example, if a patient has a creatine kinase concentration of 250—that
is, LR(241 — 360) = 4.15—and a pre-test odds of an AMI of 0.25, the post-
test odds will be 1.04 (i.e., the probability of an AMI revised from 20% to
51%). If another patient has a creatine kinase concentration of 450—that 1s,
LR(361 — 480) = 7.31—with the same pre-test odds, the post-test odds will
be 1.83 (i.e., the probability of an AMI revised from 20% to 65%). If a single
LR from a single cutoff value, such as LR(>241), had been reported instead of
LRs from several ranges of creatine kinase concentrations, the different post-
test probabilities of these patients would not have been appreciated (Radack
et al., 1986).

Several assumptions are made when applying Bayes’ theorem (Sox, Jr. et
al., 1989). One is that sensitivity and specificity are constant, regardless of the
pre-test probability. This assumption is violated if, for example, a test is less
sensitive in detecting a condition in its early stages, when its pre-test prob-
ability is low. An example is a chest x-ray for detecting lung cancer. In the
condition’s early stages, when the lesion is small, the sensitivity of a chest x-
ray is low. If the patient has no early symptoms, the pre-test probability also
will be low. Later, when the lesion is larger and easier to detect, the test’s sen-
sitivity increases and, at the same time, symptoms develop; thus the pre-test
probability increases. The post-test probability calculated from Bayes’ theorem
would be misleading if it were based on data from a study of patients having
both early and late stages of lung cancer.

A second assumption is important when calculating the probability of a con-
dition after a sequence of tests (Sox, Jr. et al., 1980). To use Bayes’ theorem,
the sensitivity and specificity of a test must be independent of the results of
other tests—meaning that if two tests are to be performed in sequence, the sen-
sitivity of the second test must be equivalent for patients who test positive and
for patients who test negative on the first test. We can write this assumption
as

P(Ty=1T,=1,D=1)=P(T, = 1|T; =0,D = 1)

where 7'y and T, denote the results of the first and second fest, respectively.
The foregoing assumption also applies to specificity, as follows:

P(T,=0|T| =1,D=0)=P(T, =0|T, =0,D = 0)

If this assumption is met, then the post-test probability of the first test in the
sequence is the pre-test probability of the second test (and so forth). If Eq.
(2.6) is used, the LRs of multiple tests can be multiplied. (See Exercise 2.7 at
the end of this chapter.)

The use of Bayes’ theorem to interpret diagnostic tests has an interesting
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analogy in the interpretation of statistical tests in clinical research (Browner
and Newman, 1987). As with diagnostic testing, errors occur in statistical hypo-
thesis testing. The results of statistical tests, as with diagnostic tests, cannot be
interpreted properly without knowledge of the prior probability of the research
hypothesis. Although difficult to quantify, the prior probability of the research
hypothesis can be used in Bayes’ theorem to calculate the probability that the
research hypothesis is true.

5211 OPTIMAL DECISION THRESHOLD ON THE ROC CURVE

In this section, we present a simplistic approach to determining the optimal
decision threshold on the ROC curve for a particular application. Loosely
defined, the optimal decision threshold for a particular application is the point
on the ROC curve where, on average, the financial and/or health effects (i.e.,
the “costs”) are minimized. Our approach to determining the optimal decision
threshold is simplistic, because some complicated issues are treated casually
and the costs needed for the determination are assumed known when, actually,
they are difficult to estimate (Metz, 1978).

We begin with two basic assumptions needed in the derivation of the opti-
mal threshold (Dwyer, 1997). First, we assume that two options for managing
the patient exist: give treatment when the condition is present or withhold treat-
ment when the condition is not present. Second, we assume that the decision to
give or withhold treatment is based on the results of the test; positive results
imply that treatment should be given, negative results imply that treatment
should be withheld.

The optimal decision threshold for a particular application depends on the
costs of performing the test and the cost of the consequences of the test’s
results (the “downstream costs”). These costs—financial and/or health——can
be viewed from the perspective of the patient and his or her care providers,
insurers, and dependents, as well as the perspective of society (Zweig and
Campbell, 1993). The costs of performing the test are denoted by Cy. Here,
Co may include the technical and professional costs of performing the test, as
well as any health costs caused by test complications. The costs of each diag-
nostic decision’s consequences are denoted by Crp, Crp, Ctn, and Cgyn, wWhere,
for example, Crp denotes the cost of a true-positive result. We weigh each of
these costs by the probability of its occurrence. The average overall cost of
performing a test, C, is

C = Co + P(TP) X Crp + P(FP) X Cpp + P(TN) X Crn + P(FN) X Cpn 2.7)

where P(TP) denotes the probability of a true-positive result and is equal to
Se x P(D = 1). Thus the cost of performing a test depends on the sensitivity
and specificity of the test, the pre-test probability of the condition, and the
consequences of the test decisions.
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The location on the ROC curve where the average overall cost is at a min-
imum for a particular application is the optimal operating point on the curve
(Metz, 1978). The slope m, of the ROC curve at the optimal operating point
is given by the following equation. [See Metz (1978) for proof.]

P(D=0) Cgp-Crn
m = X (2.8)
P(D=1) Cgy- Crp

If the ROC curve is smooth, the optimal operating point is where a line with
this slope is tangent to the curve. When the empirical ROC curve is used, the
optimal operating point is where a line—with the slope calculated from Eq.
(2.8)~—moves down from above and to the left to intersect the ROC curve plot
(Zweig and Campbell, 1993). Another way to find the optimal operating point
is to find the sensitivity and specificity pair that maximizes the function [sen-
sitivity — m(1 — specificity)], where m is from Eq. (2.8) (Zweig and Campbell,
1993).

Note that the best operating point on the ROC curve does not depend on
Co. Instead, it depends on the consequences of the test’s results only in terms
of the difference in costs between FPs and TNs relative to the difference in
costs between FNs and TPs.

The slope of the ROC curve is steep in the lower left, where both the TP and
FP rates are low, and it is flat near the upper right, where the TP and FP rates
are high. The best operating point is near the lower left if the condition is rare
and/or if treatment for the condition is harmful to healthy patients and of little
benefit to patients with the condition. In these situations, we want to minimize
the number of FPs, so the best operating point is in the lower left (Metz, 1978).
In contrast, when the condition is common and/or when treatment is highly
beneficial and poses little harm to healthy patients, the best operating point is
toward the upper right. In these situations, we want to minimize FNs,

Somoza and Mossman (1991) use Eq. (2.8) to determine the optimal oper-
ating point for a biological marker used to detect depression. The biological
marker is rapid eye movement (REM) latency, the time between sleep onset
and the start of the first rapid eye movement period. REM latency is shorter
in patients with depression. Somoza and Mossman fit ROC curves to the data
of four studies of REM latency in patients suspicious for depression. They use
patient “utility” values to describe the relative costs of the test’s decision, with
values ranging from 0.0 (the lowest health value) to 1.0 (the highest health
value). Somoza and Mossman also assigned a utility value of 1.0 to patients
in whom depression was correctly diagnosed and for whom treatment could be
offered (TPs); 0.9 to patients in whom depression was correctly ruled out but
for whom no treatment could be offered (TNs):; 0.7 to patients for whom an
incorrect diagnosis of depression was made and, consequently, an unnecessary
treatment regimen was given (with needless exposure to treatment side effects)
(FPs); and 0.0 to depressed patients in whom depression went undetected and
for whom an effective treatment was not given (FNs). If the prevalence of
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depression in the presenting population is 0.10, then the slope of the ROC
curve at the optimal operating point will be 1.8. The optimal decision thresh-
old is between 47 and 60 minutes, depending on which ROC curves of the
four studies are used. Patients with a REM latency of less than this decision
threshold are diagnosed with depression and are treated; otherwise, the patient
is considered negative for depression and is not treated.

The financial and health costs used in determining the optimal decision
threshold must be calculated with great care. Estimation of these costs is a
specialized field in medicine. A few relevant references are Pauker and Kas-
sirer (1975), (1980); Weinstein et al. (1980), (1996); Gold et al. (1996); and
Russell et al. (1996).

2.12 MULTIPLE TESTS

Few diagnostic tests are both highly sensitive and specific. To diagnose
patients, clinicians often order two or more tests, which can be performed in
parallel (i.e., at the same time and interpreted in combination) or serially (i.e.,
the results of the first test determine whether the second test is performed).
The advantage of serial testing is its cost-effectiveness, because some patients
receive only one test. The potential disadvantage is the delay in treatment while
one awaits the results of the second test (Hershey, Cebul, and Williams, 1936).
We talk briefly about these two scenarios, beginning with parallel testing.

Griner et al. (1981) gave hypothetical data for two tests, A and B, for diag-
nosing pancreatic cancer. We assume that the sensitivity and specificity of the
tests are independent of the results of the other tests. (See Section 2.10.) Indi-
vidually, test A has a sensitivity and specificity of 0.8 and 0.6, respectively;
test B, 0.9 and 0.9, respectively. There are two ways in which the tests can be
interpreted in parallel:

1. The OR rule, in which the diagnosis is positive if either A or B is positive.
Both A and B must be negative for the diagnosis to be negative.

2. The AND rule, in which the diagnosis is positive only if both A and B are
positive. Either A or B can be negative for the diagnosis to be negative.

Using the OR rule, the sensitivity of the combined result is Sey + Sep —
(Ses % Seg) = 0.8 + 0.9 — (0.8 x 0.9) = 0.98. The specificity is (Spa X Spp) =
0.54. With the OR rule, the sensitivity of the combined result is higher than
either test individually, but the specificity is lower than either test individually.
Using the AND rule, the combined sensitivity is (Seq % Sep) = 0.72, whereas
the specificity is Spa + Spp — (Spa X Sps) = 0.96. Thus with the AND rule,
specificity is higher than either test individually, but the sensitivity is lower
than either test individually.

An example of parallel testing is given by Beam, Sullivan, and Layde (1996)
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in a study of the effect of double-reading mammograms. Here, two readers
interpreted each mammogram, and their results were combined using the OR
rule. The result was generally an increase in sensitivity offset by an increase
in the FPR.

An alternative to parallel testing is serial testing. The common decision rules
in serial testing are as follows:

1. For the OR rule, if the first test is positive, the diagnosis will be pos-
itive; otherwise, perform the second test. If the second test is positive,
the diagnosis will be positive; otherwise, the diagnosis will be negative.

2. For the AND rule, if the first test is positive, apply the second test. If
the second test is also positive, the diagnosis will be positive; otherwise,
the diagnosis will be negative.

Again using the hypothetical data from Griner et al. (1981), suppose that
test A is the first test applied. Using the AND rule, the sensitivity is Sey X Sep
= 0.72 and the specificity is Spa + (1 — Sps) X Spp = 0.96; the accuracy is the
same as the AND rule for parallel testing. Using the OR rule, the sensitivity
is Seq + (1 — Sey) x Sep = 0.98 and the specificity is Spa X Spg = 0.54: the
accuracy is the same as it is in the OR rule for parallel testing.

Serial testing is particularly cost-efficient when screening patients for a rare
condition. Exercise 2.7 at the end of this chapter describes a 3-tier serial-test
approach, using the AND rule, to screen for preclinical Parkinson’s disease.

EXERCISES

2.1 A study was conducted to assess the accuracy of “Cine” MRI for the
detection of thoracic aortic dissection (VanDyke et al., 1993). There were
45 patients with a dissection and 69 patients without a dissection stud-
ied. The reader used the following confidence scale: 1 = “definitely not
dissection,” 2 = “probably not dissection,” 3 = “possible dissection,” 4 =
“probable dissection,” and 5 = “definite dissection.” The test results are
summarized in the table that follows. Compute the Se and FPR for each
possible decision threshold; then plot the ROC curve.

Dissection Status | 2 3 4 5
Present 7 7 3 5 23
Absent 39 19 9 | |

2.2 Design an experiment to mimic a diagnostic test that lacks the ability
to discriminate between patients with versus without the condition. You
may use coins, dice, or other suitable objects. Construct an ROC curve
from the results of your experiment. Describe the curve.
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There are five outcomes of a test: T = a, b, ¢, d, or e. Their relative
frequencies for patients with and without the condition are given in the
table that follows. Compute the LR associated with each potential out-
come. Construct a set of decision rules that provides a proper ROC curve.

t P(T=t|D=1) P(T =t|D=0)

a 0.1 0.4
b 0.1 0.1
c 0.2 0.1
d 0.2 0.3
e 0.4 0.1

The investigators of the study described in Exercise 2.1 hypothesized that
the new Cine imaging sequence would improve accuracy over the stan-
dard “spin-echo” imaging sequence. The reader’s confidence scores for
the same 114 patients using spin-echo imaging are given in the table that
follows. Plot the ROC curve on the same axes as those in Exercise 2.1.
Discuss the relative strengths and weaknesses of the ROC curve area and
the partial area for comparing these two curves.

Dissection Status 1 2 3 4 5
Present 1 4 10 4 26
Absent 21 39 9 0 0

Magnetic resonance angiography (MRA) is a noninvasive test used to
detect cerebral aneurysms; its Se and Sp are each 20.80. Asymptomatic
patients with a family history of aneurysms have a 20% pre-test proba-
bility of aneurysms. For these patients, assuming that the Se and Sp of
MRA are equal to 0.80, what is the probability of an aneurysm after a
positive test?

The probability of an aneurysm in the general population (i.e., subjects
without a family history) is 0.02. What must the Se and Sp of MRA be
to achieve the same post-test probability for a patient without a family
history as for a patient with a family history? (Assume that Se = Sp.)

Under what scenarios is the PPV equal to zero? Equal to one? Under
what scenarios is the NPV equal to zero? Equal to one?

Parkinson’s disease—here, abbreviated as PD—is a debilitating disorder
affecting the neurologic system by depleting the brain of dopamine neu-
rons. Currently, there are no known risk factors, and the disease is often
so difficult to diagnose that a substantial dopamine-neuron loss can occur
before any treatment is begun. The goal of this study is to identify patients
with preclinical PD so that their treatment can begin earlier in the course
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of the disease. Because the prevalence of preclinical PD is low (approxi-
mately 1%), no single test has adequate sensitivity and specificity. Thus a
3-tier diagnostic test strategy is proposed (E. Montgomery, MD, Cleve-
land Clinic Foundation, OH; personal communication, 1998). The first
test is a simple questionnaire in which patients are asked about problems
with daily living; it has a sensitivity of 95% but a specificity of only
20%. If a patient tests positive on the questionnaire, then he or she will
undergo the second test, which consists of olfactory, motor, and mood
assessments; its sensitivity is 72% and its specificity is 86%. The third
test is a nuclear-imaging single-photon emission computed tomography
(SPECT) study in which dopamine neurons are examined; its sensitiv-
ity and specificity are both 80%. If a patient tests positive on both of
the first two tests, he or she will undergo the SPECT imaging. Thus the
patient’s result is positive if all three tests are positive (i.e., AND serial
testing); otherwise, the result is negative. What is the probability of PD
after a positive SPECT study—that is, P(D = 1|positive results on all
three tests)? What is the probability of no PD after a negative SPECT
study—that is, P(D = 0] positive results on first two tests and negative
result on third test)? What is the probability of no PD after a negative
second test—that is, P(D = 0] test + on first test and minus on second
test)? What is the sensitivity and FPR of this 3-tier approach?
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